September  2012, 7(3): 415-428. doi: 10.3934/nhm.2012.7.415

Structural properties of urban bus and subway networks of Madrid

1. 

Departamento de Ingeniería Telemática, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Ave. Universidad, 30, Edif. Torres Quevedo, Leganés, 28911 Madrid, Spain

2. 

Grupo de Sistemas Complejos and Departamento de Fisica y Mecanica, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid

Received  December 2011 Revised  June 2012 Published  October 2012

The goal of this research is to estimate different parameters in the urban bus and the subway networks of Madrid. The obtained results will allow learning more about both types of networks: modularity, most important stops, sensitivity in the district networks (districts with highest and lowest sensitivity), bus line concentration by detected communities, communication capacity for these networks (districts with the greatest and less number of inner and external communications), and relation between network and dweller density by district. This study can help to improve the transport networks: reducing the district sensitivity, adding new stops or routes, etc.
Citation: Mary Luz Mouronte, Rosa María Benito. Structural properties of urban bus and subway networks of Madrid. Networks & Heterogeneous Media, 2012, 7 (3) : 415-428. doi: 10.3934/nhm.2012.7.415
References:
[1]

J. P. Cardenas, et al., The effect of the complex topology on the robustness of spanish SDH network,, in, (2007), 2289.   Google Scholar

[2]

R. Criado, et al., Efficiency, vulnerability and cost: An overview with applications to subway networks worldwide,, Int. Journal of Bif. And Chaos, 17 (2007), 2289.  doi: 10.1142/S0218127407018397.  Google Scholar

[3]

R. Criado, et al., Understanding complex networks through the study of their critical nodes: Efficiency, vulnerability and dynamical importance,, in, (2007), 23.   Google Scholar

[4]

B. Fields, et al, Analysis and exploitation of musician social networks for recommendation and discovery,, IEEE Transactions on Multimedia, 13 (2011), 674.  doi: 10.1109/TMM.2011.2111365.  Google Scholar

[5]

O. Kwona and W. S. Jung, Intercity express bus flow in Korea and its network analysis,, Physica A: Statistical Mechanics and its Applications, 391 (2012), 4261.  doi: 10.1016/j.physa.2012.03.031.  Google Scholar

[6]

T. Majima, M. Katuhara and K. Takadama, Analysis on transport networks of railway, subway and waterbus in Japan,, Emergent Intelligence of Networked Agents Studies in Computational Intelligence, 56 (2007), 99.  doi: 10.1007/978-3-540-71075-2_8.  Google Scholar

[7]

M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[8]

M. E. J. Newman, Modularity and community structure in networks,, Proc. Natl. Acad. Sci. USA, 103 (2006), 8577.  doi: 10.1073/pnas.0601602103.  Google Scholar

[9]

P. Pons and M. Latapy, Computing communities in large networks using random walks,, J. Graph Algorithms Appl., 10 (2006), 191.  doi: 10.7155/jgaa.00124.  Google Scholar

[10]

D. Watts and S. Strogatz, Collective dynamics of 'small-world' networks,, Nature, 393 (1998), 440.  doi: 10.1038/30918.  Google Scholar

show all references

References:
[1]

J. P. Cardenas, et al., The effect of the complex topology on the robustness of spanish SDH network,, in, (2007), 2289.   Google Scholar

[2]

R. Criado, et al., Efficiency, vulnerability and cost: An overview with applications to subway networks worldwide,, Int. Journal of Bif. And Chaos, 17 (2007), 2289.  doi: 10.1142/S0218127407018397.  Google Scholar

[3]

R. Criado, et al., Understanding complex networks through the study of their critical nodes: Efficiency, vulnerability and dynamical importance,, in, (2007), 23.   Google Scholar

[4]

B. Fields, et al, Analysis and exploitation of musician social networks for recommendation and discovery,, IEEE Transactions on Multimedia, 13 (2011), 674.  doi: 10.1109/TMM.2011.2111365.  Google Scholar

[5]

O. Kwona and W. S. Jung, Intercity express bus flow in Korea and its network analysis,, Physica A: Statistical Mechanics and its Applications, 391 (2012), 4261.  doi: 10.1016/j.physa.2012.03.031.  Google Scholar

[6]

T. Majima, M. Katuhara and K. Takadama, Analysis on transport networks of railway, subway and waterbus in Japan,, Emergent Intelligence of Networked Agents Studies in Computational Intelligence, 56 (2007), 99.  doi: 10.1007/978-3-540-71075-2_8.  Google Scholar

[7]

M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[8]

M. E. J. Newman, Modularity and community structure in networks,, Proc. Natl. Acad. Sci. USA, 103 (2006), 8577.  doi: 10.1073/pnas.0601602103.  Google Scholar

[9]

P. Pons and M. Latapy, Computing communities in large networks using random walks,, J. Graph Algorithms Appl., 10 (2006), 191.  doi: 10.7155/jgaa.00124.  Google Scholar

[10]

D. Watts and S. Strogatz, Collective dynamics of 'small-world' networks,, Nature, 393 (1998), 440.  doi: 10.1038/30918.  Google Scholar

[1]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020361

[2]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[3]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295

[4]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[5]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[6]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[7]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[8]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[9]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[10]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[11]

Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049

[12]

Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060

[13]

Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155

[14]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]