September  2012, 7(3): 415-428. doi: 10.3934/nhm.2012.7.415

Structural properties of urban bus and subway networks of Madrid

1. 

Departamento de Ingeniería Telemática, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Ave. Universidad, 30, Edif. Torres Quevedo, Leganés, 28911 Madrid, Spain

2. 

Grupo de Sistemas Complejos and Departamento de Fisica y Mecanica, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid

Received  December 2011 Revised  June 2012 Published  October 2012

The goal of this research is to estimate different parameters in the urban bus and the subway networks of Madrid. The obtained results will allow learning more about both types of networks: modularity, most important stops, sensitivity in the district networks (districts with highest and lowest sensitivity), bus line concentration by detected communities, communication capacity for these networks (districts with the greatest and less number of inner and external communications), and relation between network and dweller density by district. This study can help to improve the transport networks: reducing the district sensitivity, adding new stops or routes, etc.
Citation: Mary Luz Mouronte, Rosa María Benito. Structural properties of urban bus and subway networks of Madrid. Networks & Heterogeneous Media, 2012, 7 (3) : 415-428. doi: 10.3934/nhm.2012.7.415
References:
[1]

J. P. Cardenas, et al., The effect of the complex topology on the robustness of spanish SDH network,, in, (2007), 2289.   Google Scholar

[2]

R. Criado, et al., Efficiency, vulnerability and cost: An overview with applications to subway networks worldwide,, Int. Journal of Bif. And Chaos, 17 (2007), 2289.  doi: 10.1142/S0218127407018397.  Google Scholar

[3]

R. Criado, et al., Understanding complex networks through the study of their critical nodes: Efficiency, vulnerability and dynamical importance,, in, (2007), 23.   Google Scholar

[4]

B. Fields, et al, Analysis and exploitation of musician social networks for recommendation and discovery,, IEEE Transactions on Multimedia, 13 (2011), 674.  doi: 10.1109/TMM.2011.2111365.  Google Scholar

[5]

O. Kwona and W. S. Jung, Intercity express bus flow in Korea and its network analysis,, Physica A: Statistical Mechanics and its Applications, 391 (2012), 4261.  doi: 10.1016/j.physa.2012.03.031.  Google Scholar

[6]

T. Majima, M. Katuhara and K. Takadama, Analysis on transport networks of railway, subway and waterbus in Japan,, Emergent Intelligence of Networked Agents Studies in Computational Intelligence, 56 (2007), 99.  doi: 10.1007/978-3-540-71075-2_8.  Google Scholar

[7]

M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[8]

M. E. J. Newman, Modularity and community structure in networks,, Proc. Natl. Acad. Sci. USA, 103 (2006), 8577.  doi: 10.1073/pnas.0601602103.  Google Scholar

[9]

P. Pons and M. Latapy, Computing communities in large networks using random walks,, J. Graph Algorithms Appl., 10 (2006), 191.  doi: 10.7155/jgaa.00124.  Google Scholar

[10]

D. Watts and S. Strogatz, Collective dynamics of 'small-world' networks,, Nature, 393 (1998), 440.  doi: 10.1038/30918.  Google Scholar

show all references

References:
[1]

J. P. Cardenas, et al., The effect of the complex topology on the robustness of spanish SDH network,, in, (2007), 2289.   Google Scholar

[2]

R. Criado, et al., Efficiency, vulnerability and cost: An overview with applications to subway networks worldwide,, Int. Journal of Bif. And Chaos, 17 (2007), 2289.  doi: 10.1142/S0218127407018397.  Google Scholar

[3]

R. Criado, et al., Understanding complex networks through the study of their critical nodes: Efficiency, vulnerability and dynamical importance,, in, (2007), 23.   Google Scholar

[4]

B. Fields, et al, Analysis and exploitation of musician social networks for recommendation and discovery,, IEEE Transactions on Multimedia, 13 (2011), 674.  doi: 10.1109/TMM.2011.2111365.  Google Scholar

[5]

O. Kwona and W. S. Jung, Intercity express bus flow in Korea and its network analysis,, Physica A: Statistical Mechanics and its Applications, 391 (2012), 4261.  doi: 10.1016/j.physa.2012.03.031.  Google Scholar

[6]

T. Majima, M. Katuhara and K. Takadama, Analysis on transport networks of railway, subway and waterbus in Japan,, Emergent Intelligence of Networked Agents Studies in Computational Intelligence, 56 (2007), 99.  doi: 10.1007/978-3-540-71075-2_8.  Google Scholar

[7]

M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[8]

M. E. J. Newman, Modularity and community structure in networks,, Proc. Natl. Acad. Sci. USA, 103 (2006), 8577.  doi: 10.1073/pnas.0601602103.  Google Scholar

[9]

P. Pons and M. Latapy, Computing communities in large networks using random walks,, J. Graph Algorithms Appl., 10 (2006), 191.  doi: 10.7155/jgaa.00124.  Google Scholar

[10]

D. Watts and S. Strogatz, Collective dynamics of 'small-world' networks,, Nature, 393 (1998), 440.  doi: 10.1038/30918.  Google Scholar

[1]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

[2]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

[3]

Georgy P. Karev. Dynamics of heterogeneous populations and communities and evolution of distributions. Conference Publications, 2005, 2005 (Special) : 487-496. doi: 10.3934/proc.2005.2005.487

[4]

Martin Lara, Sebastián Ferrer. Computing long-lifetime science orbits around natural satellites. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 293-302. doi: 10.3934/dcdss.2008.1.293

[5]

Jean-Philippe Cointet, David Chavalarias. Multi-level science mapping with asymmetrical paradigmatic proximity. Networks & Heterogeneous Media, 2008, 3 (2) : 267-276. doi: 10.3934/nhm.2008.3.267

[6]

A. Marigo. Robustness of square networks. Networks & Heterogeneous Media, 2009, 4 (3) : 537-575. doi: 10.3934/nhm.2009.4.537

[7]

Daniel Ryan, Robert Stephen Cantrell. Avoidance behavior in intraguild predation communities: A cross-diffusion model. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1641-1663. doi: 10.3934/dcds.2015.35.1641

[8]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[9]

Oded Schramm. Hyperfinite graph limits. Electronic Research Announcements, 2008, 15: 17-23. doi: 10.3934/era.2008.15.17

[10]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[11]

John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

[12]

Luis Barreira, Claudia Valls. Noninvertible cocycles: Robustness of exponential dichotomies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4111-4131. doi: 10.3934/dcds.2012.32.4111

[13]

Roy H. Goodman. NLS bifurcations on the bowtie combinatorial graph and the dumbbell metric graph. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2203-2232. doi: 10.3934/dcds.2019093

[14]

Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261

[15]

Dominique Zosso, Braxton Osting. A minimal surface criterion for graph partitioning. Inverse Problems & Imaging, 2016, 10 (4) : 1149-1180. doi: 10.3934/ipi.2016036

[16]

Mario Jorge Dias Carneiro, Rafael O. Ruggiero. On the graph theorem for Lagrangian minimizing tori. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6029-6045. doi: 10.3934/dcds.2018260

[17]

Dan A. Korytowski, Hal L. Smith. Persistence in phage-bacteria communities with nested and one-to-one infection networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 859-875. doi: 10.3934/dcdsb.2017043

[18]

Desheng Li, P.E. Kloeden. Robustness of asymptotic stability to small time delays. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1007-1034. doi: 10.3934/dcds.2005.13.1007

[19]

Cristopher Hermosilla. Stratified discontinuous differential equations and sufficient conditions for robustness. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4415-4437. doi: 10.3934/dcds.2015.35.4415

[20]

Juan Manuel Pastor, Silvia Santamaría, Marcos Méndez, Javier Galeano. Effects of topology on robustness in ecological bipartite networks. Networks & Heterogeneous Media, 2012, 7 (3) : 429-440. doi: 10.3934/nhm.2012.7.429

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]