-
Previous Article
On congruity of nodes and assortative information content in complex networks
- NHM Home
- This Issue
-
Next Article
Structural properties of urban bus and subway networks of Madrid
Effects of topology on robustness in ecological bipartite networks
1. | Dept. Ciencia y Tecnología Aplicada a la I.T. Agrícola, and Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040-Madrid, Spain, Spain |
2. | Áera de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Spain |
3. | Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Spain |
References:
[1] |
R. Albert, H. Jeong and A. L. Barabási, Error and attack tolerance of complex networks,, Nature, 406 (2000), 378.
doi: 10.1038/35019019. |
[2] |
J. Bascompte, P. Jordano and J. M. Olesen, Asymmetric coevolutionary networks facilitate biodiversity maintenance,, Science, 312 (2006), 431. Google Scholar |
[3] |
J. Bascompte and P. Jordano, Plant-animal mutualistic networks: The architecture of biodiversity,, Annu. Rev. Ecol. Evol. S., 38 (2007), 567. Google Scholar |
[4] |
P. Crucitti, V. Latora, M. Marchiori and A. Rapisarda, Error and attack tolerance of complex networks,, Physica A, 340 (2004), 388.
doi: 10.1016/j.physa.2004.04.031. |
[5] |
C. F. Dormann, J. Fründ, N. Blüthgen and B. Gruber, Indices, graphs and null models: analyzing bipartite ecological networks,, The Open Ecology Journal, 2 (2009), 7. Google Scholar |
[6] |
J. A. Dunne, R. J. Williams and N. D. Martinez, Network structure and biodiversity loss in food webs: Robustness increases with connectance,, Ecol. Lett., 5 (2002), 558. Google Scholar |
[7] |
J. A. Dunne and R. J. Williams, Cascading extinctions and community collapse in model food webs,, Philos. T. R. Soc. B., 364 (2009), 1711. Google Scholar |
[8] |
H. Elberling and J. M. Olesen, The structure of a high latitude plant-flower visitor system: tthe dominance of flies,, Ecography, 22 (1999), 314. Google Scholar |
[9] |
M. R. Gardner and W. R. Ashby, Connectance of large dynamic (cybernetic) systems: Critical values for stability,, Nature, 228 (1970), 784.
doi: 10.1038/228784a0. |
[10] |
J. Gómez-Gardeñez, V. Latora, Y. Moreno and E. Profumo, Spreading of sexually transmitted diseasesin heterosexual populations,, P. Natl. Acad. Sci. USA, 105 (2008), 1399.
doi: 10.1073/pnas.0707332105. |
[11] |
P. Jordano, J. Bascompte and J. M. Olesen, Invariant properties in coevolutionary networks of plant-animal interactions,, Ecol. Lett., 6 (2003), 69. Google Scholar |
[12] |
C. N. Kaiser-Bunbury, S. Muff, J. Memmott and C. B. Muller, The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour,, Ecol. Lett., 13 (2010), 442. Google Scholar |
[13] |
Y. Lai, A. Motter and T. Nishikawa, Attacks and cascades in complex networks,, Lec. Notes Phys., 310 (2004), 299.
doi: 10.1007/978-3-540-44485-5_14. |
[14] |
R. May, Will a large complex system be stable?,, Nature, 238 (1972), 413. Google Scholar |
[15] |
R. May, "Stability and Complexity in Model Ecosystems,", Princeton Univ. Press, (2001). Google Scholar |
[16] |
J. Memmott, N. M. Waser and M. V. Price, Tolerance of pollination networks to species extinctions,, P. Roy. Soc. Lond. B. Bio., 271 (2004), 2605.
doi: 10.1098/rspb.2004.2909. |
[17] |
A. Motter and Y. Lai, Cascade-based attacks on complex networks,, Phys. Rev. E, 66 (2002), 065102.
doi: 10.1103/PhysRevE.66.065102. |
[18] |
, NCEAS interaction webs database,, , (). Google Scholar |
[19] |
J. M. Olesen and P. Jordano, Geographic patterns in plant-pollinator mutualistic networks,, Ecology, 83 (2002), 2416. Google Scholar |
[20] |
J. M. Olesen, J. Bascompte, Y. L. Dupont and P. Jordano, The modularity of pollination networks,, P. Natl. Acad. Sci. USA, 104 (2007), 19891.
doi: 10.1073/pnas.0706375104. |
[21] |
S. R. Proulx and P. C. Phillips, The opportunity for canalization and the evolution of genetic networks,, Am. Nat., 165 (2005), 147.
doi: 10.1086/426873. |
[22] |
M. Rosas-Casals, S. Valverde and R. V. Solé, Topological vulnerability of the European power grid under errors and attacks,, Int. J. Bifurcat. Chaos, 17 (2007), 2465.
doi: 10.1142/S0218127407018531. |
[23] |
S. Santamaría, J. M. Pastor, J. Galeano and M. Méndez, Alpine pollination networks exhibit a broad range of robustness to species extinction,, To be published., (). Google Scholar |
[24] |
R. V. Solé and J. M. Montoya, Complexity and fragility in ecological networks,, P. Roy. Soc. Lond. B. Biol., 268 (2001), 2039.
doi: 10.1098/rspb.2001.1767. |
[25] |
U. T. Srinivasan, J. A. Dunne, J. Harte and N. D. Martinez, Response of complex food webs to realistic extinction sequences,, Ecology, 88 (2007), 671.
doi: 10.1890/06-0971. |
[26] |
P. Yodzis, The connectance of real ecosystems,, Nature, 284 (1980), 544.
doi: 10.1038/284544a0. |
show all references
References:
[1] |
R. Albert, H. Jeong and A. L. Barabási, Error and attack tolerance of complex networks,, Nature, 406 (2000), 378.
doi: 10.1038/35019019. |
[2] |
J. Bascompte, P. Jordano and J. M. Olesen, Asymmetric coevolutionary networks facilitate biodiversity maintenance,, Science, 312 (2006), 431. Google Scholar |
[3] |
J. Bascompte and P. Jordano, Plant-animal mutualistic networks: The architecture of biodiversity,, Annu. Rev. Ecol. Evol. S., 38 (2007), 567. Google Scholar |
[4] |
P. Crucitti, V. Latora, M. Marchiori and A. Rapisarda, Error and attack tolerance of complex networks,, Physica A, 340 (2004), 388.
doi: 10.1016/j.physa.2004.04.031. |
[5] |
C. F. Dormann, J. Fründ, N. Blüthgen and B. Gruber, Indices, graphs and null models: analyzing bipartite ecological networks,, The Open Ecology Journal, 2 (2009), 7. Google Scholar |
[6] |
J. A. Dunne, R. J. Williams and N. D. Martinez, Network structure and biodiversity loss in food webs: Robustness increases with connectance,, Ecol. Lett., 5 (2002), 558. Google Scholar |
[7] |
J. A. Dunne and R. J. Williams, Cascading extinctions and community collapse in model food webs,, Philos. T. R. Soc. B., 364 (2009), 1711. Google Scholar |
[8] |
H. Elberling and J. M. Olesen, The structure of a high latitude plant-flower visitor system: tthe dominance of flies,, Ecography, 22 (1999), 314. Google Scholar |
[9] |
M. R. Gardner and W. R. Ashby, Connectance of large dynamic (cybernetic) systems: Critical values for stability,, Nature, 228 (1970), 784.
doi: 10.1038/228784a0. |
[10] |
J. Gómez-Gardeñez, V. Latora, Y. Moreno and E. Profumo, Spreading of sexually transmitted diseasesin heterosexual populations,, P. Natl. Acad. Sci. USA, 105 (2008), 1399.
doi: 10.1073/pnas.0707332105. |
[11] |
P. Jordano, J. Bascompte and J. M. Olesen, Invariant properties in coevolutionary networks of plant-animal interactions,, Ecol. Lett., 6 (2003), 69. Google Scholar |
[12] |
C. N. Kaiser-Bunbury, S. Muff, J. Memmott and C. B. Muller, The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour,, Ecol. Lett., 13 (2010), 442. Google Scholar |
[13] |
Y. Lai, A. Motter and T. Nishikawa, Attacks and cascades in complex networks,, Lec. Notes Phys., 310 (2004), 299.
doi: 10.1007/978-3-540-44485-5_14. |
[14] |
R. May, Will a large complex system be stable?,, Nature, 238 (1972), 413. Google Scholar |
[15] |
R. May, "Stability and Complexity in Model Ecosystems,", Princeton Univ. Press, (2001). Google Scholar |
[16] |
J. Memmott, N. M. Waser and M. V. Price, Tolerance of pollination networks to species extinctions,, P. Roy. Soc. Lond. B. Bio., 271 (2004), 2605.
doi: 10.1098/rspb.2004.2909. |
[17] |
A. Motter and Y. Lai, Cascade-based attacks on complex networks,, Phys. Rev. E, 66 (2002), 065102.
doi: 10.1103/PhysRevE.66.065102. |
[18] |
, NCEAS interaction webs database,, , (). Google Scholar |
[19] |
J. M. Olesen and P. Jordano, Geographic patterns in plant-pollinator mutualistic networks,, Ecology, 83 (2002), 2416. Google Scholar |
[20] |
J. M. Olesen, J. Bascompte, Y. L. Dupont and P. Jordano, The modularity of pollination networks,, P. Natl. Acad. Sci. USA, 104 (2007), 19891.
doi: 10.1073/pnas.0706375104. |
[21] |
S. R. Proulx and P. C. Phillips, The opportunity for canalization and the evolution of genetic networks,, Am. Nat., 165 (2005), 147.
doi: 10.1086/426873. |
[22] |
M. Rosas-Casals, S. Valverde and R. V. Solé, Topological vulnerability of the European power grid under errors and attacks,, Int. J. Bifurcat. Chaos, 17 (2007), 2465.
doi: 10.1142/S0218127407018531. |
[23] |
S. Santamaría, J. M. Pastor, J. Galeano and M. Méndez, Alpine pollination networks exhibit a broad range of robustness to species extinction,, To be published., (). Google Scholar |
[24] |
R. V. Solé and J. M. Montoya, Complexity and fragility in ecological networks,, P. Roy. Soc. Lond. B. Biol., 268 (2001), 2039.
doi: 10.1098/rspb.2001.1767. |
[25] |
U. T. Srinivasan, J. A. Dunne, J. Harte and N. D. Martinez, Response of complex food webs to realistic extinction sequences,, Ecology, 88 (2007), 671.
doi: 10.1890/06-0971. |
[26] |
P. Yodzis, The connectance of real ecosystems,, Nature, 284 (1980), 544.
doi: 10.1038/284544a0. |
[1] |
A. Marigo. Robustness of square networks. Networks & Heterogeneous Media, 2009, 4 (3) : 537-575. doi: 10.3934/nhm.2009.4.537 |
[2] |
Mingxing Zhou, Jing Liu, Shuai Wang, Shan He. A comparative study of robustness measures for cancer signaling networks. Big Data & Information Analytics, 2017, 2 (1) : 87-96. doi: 10.3934/bdia.2017011 |
[3] |
Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571 |
[4] |
Juan Pablo Cárdenas, Gerardo Vidal, Gastón Olivares. Complexity, selectivity and asymmetry in the conformation of the power phenomenon. Analysis of Chilean society. Networks & Heterogeneous Media, 2015, 10 (1) : 167-194. doi: 10.3934/nhm.2015.10.167 |
[5] |
Jide Sun, Lili Wang. The interaction between BIM's promotion and interest game under information asymmetry. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1301-1319. doi: 10.3934/jimo.2015.11.1301 |
[6] |
Mingyong Lai, Hongzhao Yang, Erbao Cao, Duo Qiu, Jing Qiu. Optimal decisions for a dual-channel supply chain under information asymmetry. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1023-1040. doi: 10.3934/jimo.2017088 |
[7] |
Chuan Ding, Da-Hai Li. Angel capitalists exit decisions under information asymmetry: IPO or acquisitions. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019116 |
[8] |
Luis Barreira, Claudia Valls. Noninvertible cocycles: Robustness of exponential dichotomies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4111-4131. doi: 10.3934/dcds.2012.32.4111 |
[9] |
Benoît Perthame, P. E. Souganidis. Front propagation for a jump process model arising in spacial ecology. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1235-1246. doi: 10.3934/dcds.2005.13.1235 |
[10] |
David Aleja, Julián López-Gómez. Some paradoxical effects of the advection on a class of diffusive equations in Ecology. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3031-3056. doi: 10.3934/dcdsb.2014.19.3031 |
[11] |
Robert Stephen Cantrell, Chris Cosner, William F. Fagan. The implications of model formulation when transitioning from spatial to landscape ecology. Mathematical Biosciences & Engineering, 2012, 9 (1) : 27-60. doi: 10.3934/mbe.2012.9.27 |
[12] |
Tsanou Berge, Samuel Bowong, Jean Lubuma, Martin Luther Mann Manyombe. Modeling Ebola Virus Disease transmissions with reservoir in a complex virus life ecology. Mathematical Biosciences & Engineering, 2018, 15 (1) : 21-56. doi: 10.3934/mbe.2018002 |
[13] |
Kamaldeen Okuneye, Ahmed Abdelrazec, Abba B. Gumel. Mathematical analysis of a weather-driven model for the population ecology of mosquitoes. Mathematical Biosciences & Engineering, 2018, 15 (1) : 57-93. doi: 10.3934/mbe.2018003 |
[14] |
Desheng Li, P.E. Kloeden. Robustness of asymptotic stability to small time delays. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1007-1034. doi: 10.3934/dcds.2005.13.1007 |
[15] |
Cristopher Hermosilla. Stratified discontinuous differential equations and sufficient conditions for robustness. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4415-4437. doi: 10.3934/dcds.2015.35.4415 |
[16] |
Jinzhi Lei, Frederic Y. M. Wan, Arthur D. Lander, Qing Nie. Robustness of signaling gradient in drosophila wing imaginal disc. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 835-866. doi: 10.3934/dcdsb.2011.16.835 |
[17] |
Xiaobin Mao, Hua Dai. Partial eigenvalue assignment with time delay robustness. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 207-221. doi: 10.3934/naco.2013.3.207 |
[18] |
Jin Zhang, Yonghai Wang, Chengkui Zhong. Robustness of exponentially κ-dissipative dynamical systems with perturbations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3875-3890. doi: 10.3934/dcdsb.2017198 |
[19] |
Rubén Caballero, Alexandre N. Carvalho, Pedro Marín-Rubio, José Valero. Robustness of dynamically gradient multivalued dynamical systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1049-1077. doi: 10.3934/dcdsb.2019006 |
[20] |
John D. Nagy. The Ecology and Evolutionary Biology of Cancer: A Review of Mathematical Models of Necrosis and Tumor Cell Diversity. Mathematical Biosciences & Engineering, 2005, 2 (2) : 381-418. doi: 10.3934/mbe.2005.2.381 |
2018 Impact Factor: 0.871
Tools
Metrics
Other articles
by authors
[Back to Top]