-
Previous Article
Identifying critical traffic jam areas with node centralities interference and robustness
- NHM Home
- This Issue
-
Next Article
Effects of topology on robustness in ecological bipartite networks
On congruity of nodes and assortative information content in complex networks
1. | The Centre for Complex Systems Research, Project Management Graduate Programme, School of Civil Engineering, University of Sydney, NSW 2006, Australia |
2. | CSIRO Information and Communications Technologies Centre, Locked Bag 17, North Ryde, NSW 1670, Australia |
3. | The Centre for Distributed and High Performance Computing, School of Information Technologies, University of Sydney, NSW 2006, Australia |
References:
[1] |
R. Albert and A. L. Barabási, Statistical mechanics of complex networks,, Reviews of Modern Physics, 74 (2002), 47.
doi: 10.1103/RevModPhys.74.47. |
[2] |
M. Aldana, Boolean dynamics of networks with scale-free topology,, Physica D, 185 (2003), 45.
doi: 10.1016/S0167-2789(03)00174-X. |
[3] |
U. Alon, "Introduction to Systems Biology: Design Principles of Biological Circuits,", $1^{st}$ edition, (2007).
|
[4] |
D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman and S. H. Strogatz, Are randomly grown graphs really random,, Physical Review E, 64 (2001).
doi: 10.1103/PhysRevE.64.041902. |
[5] |
K. K. S. Chung, L. Hossain and J. Davis, Exploring sociocentric and egocentric approaches for social network analysis,, in, (2005). Google Scholar |
[6] |
S. N. Dorogovtsev and J. F. F. Mendes, "Evolution of Networks: From Biological Nets to the Internet and WWW,", $1^{st}$ edition, (2003).
|
[7] |
R. Guimera, M. Sales-Pardo and L. A. Amaral, Classes of complex networks defined by role-to-role connectivity profiles,, Nature Physics, 3 (2007), 63. Google Scholar |
[8] |
B. H. Junker and F. Schreiber, "Analysis of Biological Networks (Wiley Series in Bioinformatics),", $1^{st}$ edition, (2008). Google Scholar |
[9] |
A. Kaiser and T. Schreiber, Information transfer in continuous processes,, Physica D, 166 (2002), 43.
doi: 10.1016/S0167-2789(02)00432-3. |
[10] |
F. Kepes, "Biological Networks,", $1^{st}$ edition, (2007). Google Scholar |
[11] |
S. Knock, A. McIntosh, O. Sporns, R. Ktter, P. Hagmann and V. Jirsa, The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models,, Journal of Neuroscience Methods, 183 (2009), 86.
doi: 10.1016/j.jneumeth.2009.07.007. |
[12] |
A. Kraskov, H. Stögbauer and P. Grassberger, Estimating mutual information,, Physical review E, 69 (2004).
doi: 10.1103/PhysRevE.69.066138. |
[13] |
D. J. MacKay, "Information Theory, Inference, and Learning Algorithms,", $1^{st}$ edition, (2003).
|
[14] |
M. E. J. Newman, Assortative mixing in networks,, Physical Review Letters, 89 (2002).
doi: 10.1103/PhysRevLett.89.208701. |
[15] |
M. E. J. Newman, Mixing patterns in networks,, Physical Review E, 67 (2003).
doi: 10.1103/PhysRevE.67.026126. |
[16] |
B. O. Palsson, "Systems Biology: Properties of Reconstructed Networks,", $1^{st}$ edition, (2006). Google Scholar |
[17] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Local assortativeness in scale-free networks,, Europhysics Letters, 84 (2008).
doi: 10.1209/0295-5075/84/28002. |
[18] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortativeness and information in scale-free networks,, European Physical Journal B, 67 (2009), 291.
doi: 10.1140/epjb/e2008-00473-5. |
[19] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortativity and growth of Internet,, European Physical Journal B, 70 (2009), 275.
doi: 10.1140/epjb/e2009-00219-y. |
[20] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Local assortativeness in scale-free networks-addendum,, Europhysics Letters, 89 (2010).
doi: 10.1209/0295-5075/89/49901. |
[21] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortative mixing in directed biological networks,, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9 (2012), 66. Google Scholar |
[22] |
M. Rubinov, O. Sporns, C. van Leeuwen and M. Breakspear, Symbiotic relationship between brain structure and dynamics,, BMC Neuroscience, 10 (2009).
doi: 10.1186/1471-2202-10-55. |
[23] |
R. V. Sole and S. Valverde, Information theory of complex networks: on evolution and architectural constraints,, in, (2004).
|
[24] |
S. Zhou and R. J. Mondragón, Towards modelling the internet topology - the interactive growth model,, Physical Review E, 67 (2003). Google Scholar |
[25] |
S. Zhou and R. J. Mondragón, The rich-club phenomenon in the internet topology,, Physical Review E, 8 (2004), 180. Google Scholar |
show all references
References:
[1] |
R. Albert and A. L. Barabási, Statistical mechanics of complex networks,, Reviews of Modern Physics, 74 (2002), 47.
doi: 10.1103/RevModPhys.74.47. |
[2] |
M. Aldana, Boolean dynamics of networks with scale-free topology,, Physica D, 185 (2003), 45.
doi: 10.1016/S0167-2789(03)00174-X. |
[3] |
U. Alon, "Introduction to Systems Biology: Design Principles of Biological Circuits,", $1^{st}$ edition, (2007).
|
[4] |
D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman and S. H. Strogatz, Are randomly grown graphs really random,, Physical Review E, 64 (2001).
doi: 10.1103/PhysRevE.64.041902. |
[5] |
K. K. S. Chung, L. Hossain and J. Davis, Exploring sociocentric and egocentric approaches for social network analysis,, in, (2005). Google Scholar |
[6] |
S. N. Dorogovtsev and J. F. F. Mendes, "Evolution of Networks: From Biological Nets to the Internet and WWW,", $1^{st}$ edition, (2003).
|
[7] |
R. Guimera, M. Sales-Pardo and L. A. Amaral, Classes of complex networks defined by role-to-role connectivity profiles,, Nature Physics, 3 (2007), 63. Google Scholar |
[8] |
B. H. Junker and F. Schreiber, "Analysis of Biological Networks (Wiley Series in Bioinformatics),", $1^{st}$ edition, (2008). Google Scholar |
[9] |
A. Kaiser and T. Schreiber, Information transfer in continuous processes,, Physica D, 166 (2002), 43.
doi: 10.1016/S0167-2789(02)00432-3. |
[10] |
F. Kepes, "Biological Networks,", $1^{st}$ edition, (2007). Google Scholar |
[11] |
S. Knock, A. McIntosh, O. Sporns, R. Ktter, P. Hagmann and V. Jirsa, The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models,, Journal of Neuroscience Methods, 183 (2009), 86.
doi: 10.1016/j.jneumeth.2009.07.007. |
[12] |
A. Kraskov, H. Stögbauer and P. Grassberger, Estimating mutual information,, Physical review E, 69 (2004).
doi: 10.1103/PhysRevE.69.066138. |
[13] |
D. J. MacKay, "Information Theory, Inference, and Learning Algorithms,", $1^{st}$ edition, (2003).
|
[14] |
M. E. J. Newman, Assortative mixing in networks,, Physical Review Letters, 89 (2002).
doi: 10.1103/PhysRevLett.89.208701. |
[15] |
M. E. J. Newman, Mixing patterns in networks,, Physical Review E, 67 (2003).
doi: 10.1103/PhysRevE.67.026126. |
[16] |
B. O. Palsson, "Systems Biology: Properties of Reconstructed Networks,", $1^{st}$ edition, (2006). Google Scholar |
[17] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Local assortativeness in scale-free networks,, Europhysics Letters, 84 (2008).
doi: 10.1209/0295-5075/84/28002. |
[18] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortativeness and information in scale-free networks,, European Physical Journal B, 67 (2009), 291.
doi: 10.1140/epjb/e2008-00473-5. |
[19] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortativity and growth of Internet,, European Physical Journal B, 70 (2009), 275.
doi: 10.1140/epjb/e2009-00219-y. |
[20] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Local assortativeness in scale-free networks-addendum,, Europhysics Letters, 89 (2010).
doi: 10.1209/0295-5075/89/49901. |
[21] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortative mixing in directed biological networks,, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9 (2012), 66. Google Scholar |
[22] |
M. Rubinov, O. Sporns, C. van Leeuwen and M. Breakspear, Symbiotic relationship between brain structure and dynamics,, BMC Neuroscience, 10 (2009).
doi: 10.1186/1471-2202-10-55. |
[23] |
R. V. Sole and S. Valverde, Information theory of complex networks: on evolution and architectural constraints,, in, (2004).
|
[24] |
S. Zhou and R. J. Mondragón, Towards modelling the internet topology - the interactive growth model,, Physical Review E, 67 (2003). Google Scholar |
[25] |
S. Zhou and R. J. Mondragón, The rich-club phenomenon in the internet topology,, Physical Review E, 8 (2004), 180. Google Scholar |
[1] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[2] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[3] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295 |
[4] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[5] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[6] |
Wai-Ki Ching, Jia-Wen Gu, Harry Zheng. On correlated defaults and incomplete information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 889-908. doi: 10.3934/jimo.2020003 |
[7] |
Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049 |
[8] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[9] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[10] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[11] |
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346 |
[12] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[13] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[14] |
Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021001 |
[15] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[16] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[17] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[18] |
Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020181 |
[19] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[20] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021016 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]