
Previous Article
Identifying critical traffic jam areas with node centralities interference and robustness
 NHM Home
 This Issue

Next Article
Effects of topology on robustness in ecological bipartite networks
On congruity of nodes and assortative information content in complex networks
1.  The Centre for Complex Systems Research, Project Management Graduate Programme, School of Civil Engineering, University of Sydney, NSW 2006, Australia 
2.  CSIRO Information and Communications Technologies Centre, Locked Bag 17, North Ryde, NSW 1670, Australia 
3.  The Centre for Distributed and High Performance Computing, School of Information Technologies, University of Sydney, NSW 2006, Australia 
References:
[1] 
R. Albert and A. L. Barabási, Statistical mechanics of complex networks, Reviews of Modern Physics, 74 (2002), 4797. doi: 10.1103/RevModPhys.74.47. 
[2] 
M. Aldana, Boolean dynamics of networks with scalefree topology, Physica D, 185 (2003), 4566. doi: 10.1016/S01672789(03)00174X. 
[3] 
U. Alon, "Introduction to Systems Biology: Design Principles of Biological Circuits," $1^{st}$ edition, Chapman and Hall, London, 2007. 
[4] 
D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman and S. H. Strogatz, Are randomly grown graphs really random, Physical Review E, 64 (2001). doi: 10.1103/PhysRevE.64.041902. 
[5] 
K. K. S. Chung, L. Hossain and J. Davis, Exploring sociocentric and egocentric approaches for social network analysis, in "KMAP 2005: Knowledge Management in Asia Pacific, Wellington, New Zealand," 2005. 
[6] 
S. N. Dorogovtsev and J. F. F. Mendes, "Evolution of Networks: From Biological Nets to the Internet and WWW," $1^{st}$ edition, Oxford University Press, Oxford, 2003. 
[7] 
R. Guimera, M. SalesPardo and L. A. Amaral, Classes of complex networks defined by roletorole connectivity profiles, Nature Physics, 3 (2007), 6369. 
[8] 
B. H. Junker and F. Schreiber, "Analysis of Biological Networks (Wiley Series in Bioinformatics)," $1^{st}$ edition, WileyInterscience, 2008. 
[9] 
A. Kaiser and T. Schreiber, Information transfer in continuous processes, Physica D, 166 (2002), 4362. doi: 10.1016/S01672789(02)004323. 
[10] 
F. Kepes, "Biological Networks," $1^{st}$ edition, World Scientific, Singapore, 2007. 
[11] 
S. Knock, A. McIntosh, O. Sporns, R. Ktter, P. Hagmann and V. Jirsa, The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models, Journal of Neuroscience Methods, 183 (2009), 8694. doi: 10.1016/j.jneumeth.2009.07.007. 
[12] 
A. Kraskov, H. Stögbauer and P. Grassberger, Estimating mutual information, Physical review E, 69 (2004), 066138. doi: 10.1103/PhysRevE.69.066138. 
[13] 
D. J. MacKay, "Information Theory, Inference, and Learning Algorithms," $1^{st}$ edition, Cambridge University Press, Cambridge, 2003. 
[14] 
M. E. J. Newman, Assortative mixing in networks, Physical Review Letters, 89 (2002), 208701. doi: 10.1103/PhysRevLett.89.208701. 
[15] 
M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 (2003), 026126. doi: 10.1103/PhysRevE.67.026126. 
[16] 
B. O. Palsson, "Systems Biology: Properties of Reconstructed Networks," $1^{st}$ edition, Cambridge University Press, Cambridge, 2006. 
[17] 
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Local assortativeness in scalefree networks, Europhysics Letters, 84 (2008), 28002. doi: 10.1209/02955075/84/28002. 
[18] 
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortativeness and information in scalefree networks, European Physical Journal B, 67 (2009), 291300. doi: 10.1140/epjb/e2008004735. 
[19] 
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortativity and growth of Internet, European Physical Journal B, 70 (2009), 275285. doi: 10.1140/epjb/e200900219y. 
[20] 
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Local assortativeness in scalefree networksaddendum, Europhysics Letters, 89 (2010), 49901. doi: 10.1209/02955075/89/49901. 
[21] 
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortative mixing in directed biological networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9 (2012), 6678. 
[22] 
M. Rubinov, O. Sporns, C. van Leeuwen and M. Breakspear, Symbiotic relationship between brain structure and dynamics, BMC Neuroscience, 10 (2009), 55. doi: 10.1186/147122021055. 
[23] 
R. V. Sole and S. Valverde, Information theory of complex networks: on evolution and architectural constraints, in "Lecture Notes in Physics" (eds. E. BenNaim, H. Frauenfelder, and Z. Toroczkai), Springer, (2004), 650. 
[24] 
S. Zhou and R. J. Mondragón, Towards modelling the internet topology  the interactive growth model, Physical Review E, 67 (2003), 026126. 
[25] 
S. Zhou and R. J. Mondragón, The richclub phenomenon in the internet topology, Physical Review E, 8 (2004), 180182. 
show all references
References:
[1] 
R. Albert and A. L. Barabási, Statistical mechanics of complex networks, Reviews of Modern Physics, 74 (2002), 4797. doi: 10.1103/RevModPhys.74.47. 
[2] 
M. Aldana, Boolean dynamics of networks with scalefree topology, Physica D, 185 (2003), 4566. doi: 10.1016/S01672789(03)00174X. 
[3] 
U. Alon, "Introduction to Systems Biology: Design Principles of Biological Circuits," $1^{st}$ edition, Chapman and Hall, London, 2007. 
[4] 
D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman and S. H. Strogatz, Are randomly grown graphs really random, Physical Review E, 64 (2001). doi: 10.1103/PhysRevE.64.041902. 
[5] 
K. K. S. Chung, L. Hossain and J. Davis, Exploring sociocentric and egocentric approaches for social network analysis, in "KMAP 2005: Knowledge Management in Asia Pacific, Wellington, New Zealand," 2005. 
[6] 
S. N. Dorogovtsev and J. F. F. Mendes, "Evolution of Networks: From Biological Nets to the Internet and WWW," $1^{st}$ edition, Oxford University Press, Oxford, 2003. 
[7] 
R. Guimera, M. SalesPardo and L. A. Amaral, Classes of complex networks defined by roletorole connectivity profiles, Nature Physics, 3 (2007), 6369. 
[8] 
B. H. Junker and F. Schreiber, "Analysis of Biological Networks (Wiley Series in Bioinformatics)," $1^{st}$ edition, WileyInterscience, 2008. 
[9] 
A. Kaiser and T. Schreiber, Information transfer in continuous processes, Physica D, 166 (2002), 4362. doi: 10.1016/S01672789(02)004323. 
[10] 
F. Kepes, "Biological Networks," $1^{st}$ edition, World Scientific, Singapore, 2007. 
[11] 
S. Knock, A. McIntosh, O. Sporns, R. Ktter, P. Hagmann and V. Jirsa, The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models, Journal of Neuroscience Methods, 183 (2009), 8694. doi: 10.1016/j.jneumeth.2009.07.007. 
[12] 
A. Kraskov, H. Stögbauer and P. Grassberger, Estimating mutual information, Physical review E, 69 (2004), 066138. doi: 10.1103/PhysRevE.69.066138. 
[13] 
D. J. MacKay, "Information Theory, Inference, and Learning Algorithms," $1^{st}$ edition, Cambridge University Press, Cambridge, 2003. 
[14] 
M. E. J. Newman, Assortative mixing in networks, Physical Review Letters, 89 (2002), 208701. doi: 10.1103/PhysRevLett.89.208701. 
[15] 
M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 (2003), 026126. doi: 10.1103/PhysRevE.67.026126. 
[16] 
B. O. Palsson, "Systems Biology: Properties of Reconstructed Networks," $1^{st}$ edition, Cambridge University Press, Cambridge, 2006. 
[17] 
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Local assortativeness in scalefree networks, Europhysics Letters, 84 (2008), 28002. doi: 10.1209/02955075/84/28002. 
[18] 
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortativeness and information in scalefree networks, European Physical Journal B, 67 (2009), 291300. doi: 10.1140/epjb/e2008004735. 
[19] 
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortativity and growth of Internet, European Physical Journal B, 70 (2009), 275285. doi: 10.1140/epjb/e200900219y. 
[20] 
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Local assortativeness in scalefree networksaddendum, Europhysics Letters, 89 (2010), 49901. doi: 10.1209/02955075/89/49901. 
[21] 
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortative mixing in directed biological networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9 (2012), 6678. 
[22] 
M. Rubinov, O. Sporns, C. van Leeuwen and M. Breakspear, Symbiotic relationship between brain structure and dynamics, BMC Neuroscience, 10 (2009), 55. doi: 10.1186/147122021055. 
[23] 
R. V. Sole and S. Valverde, Information theory of complex networks: on evolution and architectural constraints, in "Lecture Notes in Physics" (eds. E. BenNaim, H. Frauenfelder, and Z. Toroczkai), Springer, (2004), 650. 
[24] 
S. Zhou and R. J. Mondragón, Towards modelling the internet topology  the interactive growth model, Physical Review E, 67 (2003), 026126. 
[25] 
S. Zhou and R. J. Mondragón, The richclub phenomenon in the internet topology, Physical Review E, 8 (2004), 180182. 
[1] 
Christian Bläsche, Shawn Means, Carlo R. Laing. Degree assortativity in networks of spiking neurons. Journal of Computational Dynamics, 2020, 7 (2) : 401423. doi: 10.3934/jcd.2020016 
[2] 
Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3 (2) : 295322. doi: 10.3934/nhm.2008.3.295 
[3] 
M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media, 2008, 3 (2) : 201219. doi: 10.3934/nhm.2008.3.201 
[4] 
C. Bonanno. The algorithmic information content for randomly perturbed systems. Discrete and Continuous Dynamical Systems  B, 2004, 4 (4) : 921934. doi: 10.3934/dcdsb.2004.4.921 
[5] 
H. T. Banks, John E. Banks, R. A. Everett, John D. Stark. An adaptive feedback methodology for determining information content in stable population studies. Mathematical Biosciences & Engineering, 2016, 13 (4) : 653671. doi: 10.3934/mbe.2016013 
[6] 
Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 289299. doi: 10.3934/naco.2017019 
[7] 
Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 12951317. doi: 10.3934/mbe.2014.11.1295 
[8] 
Barton E. Lee. Consensus and voting on large graphs: An application of graph limit theory. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 17191744. doi: 10.3934/dcds.2018071 
[9] 
Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete and Continuous Dynamical Systems  B, 2015, 20 (5) : 13931404. doi: 10.3934/dcdsb.2015.20.1393 
[10] 
F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 4955. doi: 10.3934/mbe.2004.1.49 
[11] 
CholUng Choe, Thomas Dahms, Philipp Hövel, Eckehard Schöll. Control of synchrony by delay coupling in complex networks. Conference Publications, 2011, 2011 (Special) : 292301. doi: 10.3934/proc.2011.2011.292 
[12] 
Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial and Management Optimization, 2011, 7 (1) : 87101. doi: 10.3934/jimo.2011.7.87 
[13] 
Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 7278. doi: 10.3934/proc.1998.1998.72 
[14] 
Karim El Laithy, Martin Bogdan. Synaptic energy drives the information processing mechanisms in spiking neural networks. Mathematical Biosciences & Engineering, 2014, 11 (2) : 233256. doi: 10.3934/mbe.2014.11.233 
[15] 
ShuiNee Chow, Xiaojing Ye, Hongyuan Zha, Haomin Zhou. Influence prediction for continuoustime information propagation on networks. Networks and Heterogeneous Media, 2018, 13 (4) : 567583. doi: 10.3934/nhm.2018026 
[16] 
Heman Shakeri, Faryad Darabi Sahneh, Caterina Scoglio, Pietro PoggiCorradini, Victor M. Preciado. Optimal information dissemination strategy to promote preventive behaviors in multilayer epidemic networks. Mathematical Biosciences & Engineering, 2015, 12 (3) : 609623. doi: 10.3934/mbe.2015.12.609 
[17] 
Jingli Ren, Dandan Zhu, Haiyan Wang. Spreadingvanishing dichotomy in information diffusion in online social networks with intervention. Discrete and Continuous Dynamical Systems  B, 2019, 24 (4) : 18431865. doi: 10.3934/dcdsb.2018240 
[18] 
Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks and Heterogeneous Media, 2011, 6 (2) : 257277. doi: 10.3934/nhm.2011.6.257 
[19] 
Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic and Related Models, 2017, 10 (1) : 132. doi: 10.3934/krm.2017001 
[20] 
Massimiliano Zanin, Ernestina Menasalvas, Pedro A. C. Sousa, Stefano Boccaletti. Preprocessing and analyzing genetic data with complex networks: An application to Obstructive Nephropathy. Networks and Heterogeneous Media, 2012, 7 (3) : 473481. doi: 10.3934/nhm.2012.7.473 
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]