-
Previous Article
Identifying critical traffic jam areas with node centralities interference and robustness
- NHM Home
- This Issue
-
Next Article
Effects of topology on robustness in ecological bipartite networks
On congruity of nodes and assortative information content in complex networks
1. | The Centre for Complex Systems Research, Project Management Graduate Programme, School of Civil Engineering, University of Sydney, NSW 2006, Australia |
2. | CSIRO Information and Communications Technologies Centre, Locked Bag 17, North Ryde, NSW 1670, Australia |
3. | The Centre for Distributed and High Performance Computing, School of Information Technologies, University of Sydney, NSW 2006, Australia |
References:
[1] |
R. Albert and A. L. Barabási, Statistical mechanics of complex networks,, Reviews of Modern Physics, 74 (2002), 47.
doi: 10.1103/RevModPhys.74.47. |
[2] |
M. Aldana, Boolean dynamics of networks with scale-free topology,, Physica D, 185 (2003), 45.
doi: 10.1016/S0167-2789(03)00174-X. |
[3] |
U. Alon, "Introduction to Systems Biology: Design Principles of Biological Circuits,", $1^{st}$ edition, (2007).
|
[4] |
D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman and S. H. Strogatz, Are randomly grown graphs really random,, Physical Review E, 64 (2001).
doi: 10.1103/PhysRevE.64.041902. |
[5] |
K. K. S. Chung, L. Hossain and J. Davis, Exploring sociocentric and egocentric approaches for social network analysis,, in, (2005). Google Scholar |
[6] |
S. N. Dorogovtsev and J. F. F. Mendes, "Evolution of Networks: From Biological Nets to the Internet and WWW,", $1^{st}$ edition, (2003).
|
[7] |
R. Guimera, M. Sales-Pardo and L. A. Amaral, Classes of complex networks defined by role-to-role connectivity profiles,, Nature Physics, 3 (2007), 63. Google Scholar |
[8] |
B. H. Junker and F. Schreiber, "Analysis of Biological Networks (Wiley Series in Bioinformatics),", $1^{st}$ edition, (2008). Google Scholar |
[9] |
A. Kaiser and T. Schreiber, Information transfer in continuous processes,, Physica D, 166 (2002), 43.
doi: 10.1016/S0167-2789(02)00432-3. |
[10] |
F. Kepes, "Biological Networks,", $1^{st}$ edition, (2007). Google Scholar |
[11] |
S. Knock, A. McIntosh, O. Sporns, R. Ktter, P. Hagmann and V. Jirsa, The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models,, Journal of Neuroscience Methods, 183 (2009), 86.
doi: 10.1016/j.jneumeth.2009.07.007. |
[12] |
A. Kraskov, H. Stögbauer and P. Grassberger, Estimating mutual information,, Physical review E, 69 (2004).
doi: 10.1103/PhysRevE.69.066138. |
[13] |
D. J. MacKay, "Information Theory, Inference, and Learning Algorithms,", $1^{st}$ edition, (2003).
|
[14] |
M. E. J. Newman, Assortative mixing in networks,, Physical Review Letters, 89 (2002).
doi: 10.1103/PhysRevLett.89.208701. |
[15] |
M. E. J. Newman, Mixing patterns in networks,, Physical Review E, 67 (2003).
doi: 10.1103/PhysRevE.67.026126. |
[16] |
B. O. Palsson, "Systems Biology: Properties of Reconstructed Networks,", $1^{st}$ edition, (2006). Google Scholar |
[17] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Local assortativeness in scale-free networks,, Europhysics Letters, 84 (2008).
doi: 10.1209/0295-5075/84/28002. |
[18] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortativeness and information in scale-free networks,, European Physical Journal B, 67 (2009), 291.
doi: 10.1140/epjb/e2008-00473-5. |
[19] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortativity and growth of Internet,, European Physical Journal B, 70 (2009), 275.
doi: 10.1140/epjb/e2009-00219-y. |
[20] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Local assortativeness in scale-free networks-addendum,, Europhysics Letters, 89 (2010).
doi: 10.1209/0295-5075/89/49901. |
[21] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortative mixing in directed biological networks,, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9 (2012), 66. Google Scholar |
[22] |
M. Rubinov, O. Sporns, C. van Leeuwen and M. Breakspear, Symbiotic relationship between brain structure and dynamics,, BMC Neuroscience, 10 (2009).
doi: 10.1186/1471-2202-10-55. |
[23] |
R. V. Sole and S. Valverde, Information theory of complex networks: on evolution and architectural constraints,, in, (2004).
|
[24] |
S. Zhou and R. J. Mondragón, Towards modelling the internet topology - the interactive growth model,, Physical Review E, 67 (2003). Google Scholar |
[25] |
S. Zhou and R. J. Mondragón, The rich-club phenomenon in the internet topology,, Physical Review E, 8 (2004), 180. Google Scholar |
show all references
References:
[1] |
R. Albert and A. L. Barabási, Statistical mechanics of complex networks,, Reviews of Modern Physics, 74 (2002), 47.
doi: 10.1103/RevModPhys.74.47. |
[2] |
M. Aldana, Boolean dynamics of networks with scale-free topology,, Physica D, 185 (2003), 45.
doi: 10.1016/S0167-2789(03)00174-X. |
[3] |
U. Alon, "Introduction to Systems Biology: Design Principles of Biological Circuits,", $1^{st}$ edition, (2007).
|
[4] |
D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman and S. H. Strogatz, Are randomly grown graphs really random,, Physical Review E, 64 (2001).
doi: 10.1103/PhysRevE.64.041902. |
[5] |
K. K. S. Chung, L. Hossain and J. Davis, Exploring sociocentric and egocentric approaches for social network analysis,, in, (2005). Google Scholar |
[6] |
S. N. Dorogovtsev and J. F. F. Mendes, "Evolution of Networks: From Biological Nets to the Internet and WWW,", $1^{st}$ edition, (2003).
|
[7] |
R. Guimera, M. Sales-Pardo and L. A. Amaral, Classes of complex networks defined by role-to-role connectivity profiles,, Nature Physics, 3 (2007), 63. Google Scholar |
[8] |
B. H. Junker and F. Schreiber, "Analysis of Biological Networks (Wiley Series in Bioinformatics),", $1^{st}$ edition, (2008). Google Scholar |
[9] |
A. Kaiser and T. Schreiber, Information transfer in continuous processes,, Physica D, 166 (2002), 43.
doi: 10.1016/S0167-2789(02)00432-3. |
[10] |
F. Kepes, "Biological Networks,", $1^{st}$ edition, (2007). Google Scholar |
[11] |
S. Knock, A. McIntosh, O. Sporns, R. Ktter, P. Hagmann and V. Jirsa, The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models,, Journal of Neuroscience Methods, 183 (2009), 86.
doi: 10.1016/j.jneumeth.2009.07.007. |
[12] |
A. Kraskov, H. Stögbauer and P. Grassberger, Estimating mutual information,, Physical review E, 69 (2004).
doi: 10.1103/PhysRevE.69.066138. |
[13] |
D. J. MacKay, "Information Theory, Inference, and Learning Algorithms,", $1^{st}$ edition, (2003).
|
[14] |
M. E. J. Newman, Assortative mixing in networks,, Physical Review Letters, 89 (2002).
doi: 10.1103/PhysRevLett.89.208701. |
[15] |
M. E. J. Newman, Mixing patterns in networks,, Physical Review E, 67 (2003).
doi: 10.1103/PhysRevE.67.026126. |
[16] |
B. O. Palsson, "Systems Biology: Properties of Reconstructed Networks,", $1^{st}$ edition, (2006). Google Scholar |
[17] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Local assortativeness in scale-free networks,, Europhysics Letters, 84 (2008).
doi: 10.1209/0295-5075/84/28002. |
[18] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortativeness and information in scale-free networks,, European Physical Journal B, 67 (2009), 291.
doi: 10.1140/epjb/e2008-00473-5. |
[19] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortativity and growth of Internet,, European Physical Journal B, 70 (2009), 275.
doi: 10.1140/epjb/e2009-00219-y. |
[20] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Local assortativeness in scale-free networks-addendum,, Europhysics Letters, 89 (2010).
doi: 10.1209/0295-5075/89/49901. |
[21] |
M. Piraveenan, M. Prokopenko and A. Y. Zomaya, Assortative mixing in directed biological networks,, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9 (2012), 66. Google Scholar |
[22] |
M. Rubinov, O. Sporns, C. van Leeuwen and M. Breakspear, Symbiotic relationship between brain structure and dynamics,, BMC Neuroscience, 10 (2009).
doi: 10.1186/1471-2202-10-55. |
[23] |
R. V. Sole and S. Valverde, Information theory of complex networks: on evolution and architectural constraints,, in, (2004).
|
[24] |
S. Zhou and R. J. Mondragón, Towards modelling the internet topology - the interactive growth model,, Physical Review E, 67 (2003). Google Scholar |
[25] |
S. Zhou and R. J. Mondragón, The rich-club phenomenon in the internet topology,, Physical Review E, 8 (2004), 180. Google Scholar |
[1] |
Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks & Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295 |
[2] |
M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks & Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201 |
[3] |
C. Bonanno. The algorithmic information content for randomly perturbed systems. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 921-934. doi: 10.3934/dcdsb.2004.4.921 |
[4] |
H. T. Banks, John E. Banks, R. A. Everett, John D. Stark. An adaptive feedback methodology for determining information content in stable population studies. Mathematical Biosciences & Engineering, 2016, 13 (4) : 653-671. doi: 10.3934/mbe.2016013 |
[5] |
Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 289-299. doi: 10.3934/naco.2017019 |
[6] |
Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295 |
[7] |
Barton E. Lee. Consensus and voting on large graphs: An application of graph limit theory. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1719-1744. doi: 10.3934/dcds.2018071 |
[8] |
Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393 |
[9] |
F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 49-55. doi: 10.3934/mbe.2004.1.49 |
[10] |
Chol-Ung Choe, Thomas Dahms, Philipp Hövel, Eckehard Schöll. Control of synchrony by delay coupling in complex networks. Conference Publications, 2011, 2011 (Special) : 292-301. doi: 10.3934/proc.2011.2011.292 |
[11] |
Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial & Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87 |
[12] |
Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72 |
[13] |
Karim El Laithy, Martin Bogdan. Synaptic energy drives the information processing mechanisms in spiking neural networks. Mathematical Biosciences & Engineering, 2014, 11 (2) : 233-256. doi: 10.3934/mbe.2014.11.233 |
[14] |
Heman Shakeri, Faryad Darabi Sahneh, Caterina Scoglio, Pietro Poggi-Corradini, Victor M. Preciado. Optimal information dissemination strategy to promote preventive behaviors in multilayer epidemic networks. Mathematical Biosciences & Engineering, 2015, 12 (3) : 609-623. doi: 10.3934/mbe.2015.12.609 |
[15] |
Shui-Nee Chow, Xiaojing Ye, Hongyuan Zha, Haomin Zhou. Influence prediction for continuous-time information propagation on networks. Networks & Heterogeneous Media, 2018, 13 (4) : 567-583. doi: 10.3934/nhm.2018026 |
[16] |
Jingli Ren, Dandan Zhu, Haiyan Wang. Spreading-vanishing dichotomy in information diffusion in online social networks with intervention. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1843-1865. doi: 10.3934/dcdsb.2018240 |
[17] |
Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks & Heterogeneous Media, 2011, 6 (2) : 257-277. doi: 10.3934/nhm.2011.6.257 |
[18] |
Maya Mincheva, Gheorghe Craciun. Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1207-1226. doi: 10.3934/mbe.2013.10.1207 |
[19] |
A. C. Eberhard, J-P. Crouzeix. Existence of closed graph, maximal, cyclic pseudo-monotone relations and revealed preference theory. Journal of Industrial & Management Optimization, 2007, 3 (2) : 233-255. doi: 10.3934/jimo.2007.3.233 |
[20] |
Massimiliano Zanin, Ernestina Menasalvas, Pedro A. C. Sousa, Stefano Boccaletti. Preprocessing and analyzing genetic data with complex networks: An application to Obstructive Nephropathy. Networks & Heterogeneous Media, 2012, 7 (3) : 473-481. doi: 10.3934/nhm.2012.7.473 |
2018 Impact Factor: 0.871
Tools
Metrics
Other articles
by authors
[Back to Top]