-
Previous Article
Preprocessing and analyzing genetic data with complex networks: An application to Obstructive Nephropathy
- NHM Home
- This Issue
-
Next Article
On congruity of nodes and assortative information content in complex networks
Identifying critical traffic jam areas with node centralities interference and robustness
1. | University of Verona, Center for BioMedical computing, Verona, Italy |
2. | University of Verona, Center for BioMedical computing, Department of Pathology, Verona, Italy |
References:
[1] |
R. Albert, H. Jeong and A.-L. Barabási, Error and attack tolerance of complex networks, Nature, 406 (2000), 378-382. |
[2] |
A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512. |
[3] |
A.-L. Barabási and Z. N. Oltvai, Network biology: Understanding the cell's functional organization, Nature Reviews Genetics, 5 (2004), 101-113. |
[4] |
U. S. Bhalla and R. Iyengar, Emergent properties of networks of biological signaling pathways, Science, 283 (1999). |
[5] |
G. Caldarelli, "Scale-Free Networks: Complex Webs in Nature and Technology (Oxford Finance)," Oxford University Press, USA, June 2007. |
[6] |
P. Crucitti, V. Latora, M. Marchiori and A. Rapisarda, Error and attack tolerance of complex networks, News and expectations in thermostatistics, Phys. A, 340 (2004), 388-394. |
[7] |
J. A. Goguen and J. Meseguer, Security policies and security models, Symposium on Security and Privacy, IEEE Computer Society Press, (1982), 11-20. |
[8] |
H. Jeong, S. P. Mason, A. L. Barabási and Z. N. Oltvai, Lethality and centrality in protein networks, Nature, 411 (2001), 41-42. |
[9] |
H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai and A. L. Barabási, The large-scale organization of metabolic networks, Nature, 407 (2000), 651-654. |
[10] |
D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D. T. Podehl and O. Zlotowski, Centrality indices, in "Network Analysis: Methodological Foundations" (eds. U. Brandes and T. Erlebach), Springer, (2005), 16-61. |
[11] |
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii and U. Alon, Network motifs: Simple building blocks of complex networks, Science, 298 (2002), 824-827. |
[12] |
M. E. J. Newman, Modularity and community structure in networks, Proceedings of the National Academy of Sciences, 103 (2006), 8577-8582. |
[13] |
The official, Autostrade per l'Italia, http://www.autostrade.it/, 2011. |
[14] |
G. Scardoni, M. Petterlini and C. Laudanna, Analyzing biological network parameters with CentiScaPe, Bioinformatics, 25 (2009), 2857-2859. |
[15] |
C. M. Schneider, T. Mihaljev, S. Havlin and H. J. Herrmann, Suppressing epidemics with a limited amount of immunization units, Physical Review E, 84 (2011), 061911+. |
[16] |
S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268-276. |
[17] |
Duncan J. Watts and Steven H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440-442. |
show all references
References:
[1] |
R. Albert, H. Jeong and A.-L. Barabási, Error and attack tolerance of complex networks, Nature, 406 (2000), 378-382. |
[2] |
A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512. |
[3] |
A.-L. Barabási and Z. N. Oltvai, Network biology: Understanding the cell's functional organization, Nature Reviews Genetics, 5 (2004), 101-113. |
[4] |
U. S. Bhalla and R. Iyengar, Emergent properties of networks of biological signaling pathways, Science, 283 (1999). |
[5] |
G. Caldarelli, "Scale-Free Networks: Complex Webs in Nature and Technology (Oxford Finance)," Oxford University Press, USA, June 2007. |
[6] |
P. Crucitti, V. Latora, M. Marchiori and A. Rapisarda, Error and attack tolerance of complex networks, News and expectations in thermostatistics, Phys. A, 340 (2004), 388-394. |
[7] |
J. A. Goguen and J. Meseguer, Security policies and security models, Symposium on Security and Privacy, IEEE Computer Society Press, (1982), 11-20. |
[8] |
H. Jeong, S. P. Mason, A. L. Barabási and Z. N. Oltvai, Lethality and centrality in protein networks, Nature, 411 (2001), 41-42. |
[9] |
H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai and A. L. Barabási, The large-scale organization of metabolic networks, Nature, 407 (2000), 651-654. |
[10] |
D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D. T. Podehl and O. Zlotowski, Centrality indices, in "Network Analysis: Methodological Foundations" (eds. U. Brandes and T. Erlebach), Springer, (2005), 16-61. |
[11] |
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii and U. Alon, Network motifs: Simple building blocks of complex networks, Science, 298 (2002), 824-827. |
[12] |
M. E. J. Newman, Modularity and community structure in networks, Proceedings of the National Academy of Sciences, 103 (2006), 8577-8582. |
[13] |
The official, Autostrade per l'Italia, http://www.autostrade.it/, 2011. |
[14] |
G. Scardoni, M. Petterlini and C. Laudanna, Analyzing biological network parameters with CentiScaPe, Bioinformatics, 25 (2009), 2857-2859. |
[15] |
C. M. Schneider, T. Mihaljev, S. Havlin and H. J. Herrmann, Suppressing epidemics with a limited amount of immunization units, Physical Review E, 84 (2011), 061911+. |
[16] |
S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268-276. |
[17] |
Duncan J. Watts and Steven H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440-442. |
[1] |
Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295 |
[2] |
M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201 |
[3] |
Maya Mincheva, Gheorghe Craciun. Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1207-1226. doi: 10.3934/mbe.2013.10.1207 |
[4] |
Xianmin Geng, Shengli Zhou, Jiashan Tang, Cong Yang. A sufficient condition for classified networks to possess complex network features. Networks and Heterogeneous Media, 2012, 7 (1) : 59-69. doi: 10.3934/nhm.2012.7.59 |
[5] |
Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001 |
[6] |
Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279 |
[7] |
Gershon Wolansky. Limit theorems for optimal mass transportation and applications to networks. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 365-374. doi: 10.3934/dcds.2011.30.365 |
[8] |
Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295 |
[9] |
Barton E. Lee. Consensus and voting on large graphs: An application of graph limit theory. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1719-1744. doi: 10.3934/dcds.2018071 |
[10] |
Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 289-299. doi: 10.3934/naco.2017019 |
[11] |
Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427 |
[12] |
Massimiliano Caramia, Giovanni Storchi. Evaluating the effects of parking price and location in multi-modal transportation networks. Networks and Heterogeneous Media, 2006, 1 (3) : 441-465. doi: 10.3934/nhm.2006.1.441 |
[13] |
Eva Barrena, Alicia De-Los-Santos, Gilbert Laporte, Juan A. Mesa. Transferability of collective transportation line networks from a topological and passenger demand perspective. Networks and Heterogeneous Media, 2015, 10 (1) : 1-16. doi: 10.3934/nhm.2015.10.1 |
[14] |
Pengyu Yan, Shi Qiang Liu, Cheng-Hu Yang, Mahmoud Masoud. A comparative study on three graph-based constructive algorithms for multi-stage scheduling with blocking. Journal of Industrial and Management Optimization, 2019, 15 (1) : 221-233. doi: 10.3934/jimo.2018040 |
[15] |
Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393 |
[16] |
Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks and Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441 |
[17] |
F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 49-55. doi: 10.3934/mbe.2004.1.49 |
[18] |
Chol-Ung Choe, Thomas Dahms, Philipp Hövel, Eckehard Schöll. Control of synchrony by delay coupling in complex networks. Conference Publications, 2011, 2011 (Special) : 292-301. doi: 10.3934/proc.2011.2011.292 |
[19] |
Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial and Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87 |
[20] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]