September  2012, 7(3): 525-541. doi: 10.3934/nhm.2012.7.525

On the signed porous medium flow

1. 

Département de Mathématiques, UMR 8628 Université Paris-Sud 11-CNRS, Bâtiment 425, Faculté des Sciences d'Orsay, Université Paris-Sud 11, F-91405 Orsay Cedex, France

Received  December 2011 Revised  July 2012 Published  October 2012

We prove that the signed porous medium equation can be regarded as limit of an optimal transport variational scheme, therefore extending the classical result for positive solutions of [13] and showing that an optimal transport approach is suited even for treating signed densities.
Citation: Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Spaces of Probability Measures,", Lectures in Mathematics ETH Zürich, (2005).   Google Scholar

[2]

L. Ambrosio, E. Mainini and S. Serfaty, Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 217.   Google Scholar

[3]

D. G. Aronson, The porous medium equation,, in, (1986), 1.   Google Scholar

[4]

M. Bertsch and D. Hilhorst, The interface between regions where $u<0$ and $u>0$ in the porous medium equation,, Appl. Anal., 41 (1991), 111.   Google Scholar

[5]

J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media,, Arch. Ration. Mech. Anal., 179 (2006), 217.   Google Scholar

[6]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an n-dimensional porous medium,, Trans. Amer. Math. Soc., 262 (1980), 551.   Google Scholar

[7]

J. Hulshof, Similarity solutions of the porous medium equation with sign changes,, J. Math. Anal. Appl., 157 (1991), 75.   Google Scholar

[8]

J. Hulshof, J. R. King and M. Bowen, Intermediate asymptotics of the porous medium equation with sign changes,, Adv. Differential Equations, 6 (2001), 1115.   Google Scholar

[9]

J. Hulshof and J. L. Vázquez, The dipole solution for the porous medium equation in several space dimensions,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 20 (1993), 193.   Google Scholar

[10]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1.  doi: 10.1137/S0036141096303359.  Google Scholar

[11]

S. Kamin and J. L. Vázquez, Asymptotic behaviour of solutions of the porous medium equation with changing sign,, SIAM J. Math. Anal., 22 (1991), 34.   Google Scholar

[12]

E. Mainini, A description of transport cost for signed measures,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 390 (2011), 147.   Google Scholar

[13]

F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory,, Arch. Rational Mech. Anal., 141 (1998), 63.  doi: 10.1007/s002050050073.  Google Scholar

[14]

F. Otto, Evolution of microstructure in unstable porous media flow: A relaxational approach,, Comm. Pure Appl. Math., 52 (1999), 873.  doi: 10.1002/(SICI)1097-0312(199907)52:7<873::AID-CPA5>3.0.CO;2-T.  Google Scholar

[15]

F. Otto, The geometry of dissipative evolution equations: the porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101.   Google Scholar

[16]

C. J. van Duijn, S. M. Gomes and H. F. Zhang, On a class of similarity solutions of the equation $u_t=(|u|^{m-1} u_x)_x$ with $ m > -1 $,, IMA J. Appl. Math., 41 (1988), 147.   Google Scholar

[17]

J. L. Vázquez, "The Porous Medium Equation,", Mathematical Theory, (2007).   Google Scholar

[18]

J. L. Vázquez, Asymptotic beahviour for the porous medium equation posed in the whole space,, Dedicated to Philippe Bénilan. J. Evol. Equ., 3 (2003), 67.   Google Scholar

[19]

J. L. Vázquez, New self-similar solutions of the porous medium equation and the theory of solutions of changing sign,, Nonlinear Anal., 15 (1990), 931.   Google Scholar

[20]

C. Villani, "Optimal Transport, Old and New,", Springer-Verlag, (2008).   Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Spaces of Probability Measures,", Lectures in Mathematics ETH Zürich, (2005).   Google Scholar

[2]

L. Ambrosio, E. Mainini and S. Serfaty, Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 217.   Google Scholar

[3]

D. G. Aronson, The porous medium equation,, in, (1986), 1.   Google Scholar

[4]

M. Bertsch and D. Hilhorst, The interface between regions where $u<0$ and $u>0$ in the porous medium equation,, Appl. Anal., 41 (1991), 111.   Google Scholar

[5]

J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media,, Arch. Ration. Mech. Anal., 179 (2006), 217.   Google Scholar

[6]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an n-dimensional porous medium,, Trans. Amer. Math. Soc., 262 (1980), 551.   Google Scholar

[7]

J. Hulshof, Similarity solutions of the porous medium equation with sign changes,, J. Math. Anal. Appl., 157 (1991), 75.   Google Scholar

[8]

J. Hulshof, J. R. King and M. Bowen, Intermediate asymptotics of the porous medium equation with sign changes,, Adv. Differential Equations, 6 (2001), 1115.   Google Scholar

[9]

J. Hulshof and J. L. Vázquez, The dipole solution for the porous medium equation in several space dimensions,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 20 (1993), 193.   Google Scholar

[10]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1.  doi: 10.1137/S0036141096303359.  Google Scholar

[11]

S. Kamin and J. L. Vázquez, Asymptotic behaviour of solutions of the porous medium equation with changing sign,, SIAM J. Math. Anal., 22 (1991), 34.   Google Scholar

[12]

E. Mainini, A description of transport cost for signed measures,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 390 (2011), 147.   Google Scholar

[13]

F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory,, Arch. Rational Mech. Anal., 141 (1998), 63.  doi: 10.1007/s002050050073.  Google Scholar

[14]

F. Otto, Evolution of microstructure in unstable porous media flow: A relaxational approach,, Comm. Pure Appl. Math., 52 (1999), 873.  doi: 10.1002/(SICI)1097-0312(199907)52:7<873::AID-CPA5>3.0.CO;2-T.  Google Scholar

[15]

F. Otto, The geometry of dissipative evolution equations: the porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101.   Google Scholar

[16]

C. J. van Duijn, S. M. Gomes and H. F. Zhang, On a class of similarity solutions of the equation $u_t=(|u|^{m-1} u_x)_x$ with $ m > -1 $,, IMA J. Appl. Math., 41 (1988), 147.   Google Scholar

[17]

J. L. Vázquez, "The Porous Medium Equation,", Mathematical Theory, (2007).   Google Scholar

[18]

J. L. Vázquez, Asymptotic beahviour for the porous medium equation posed in the whole space,, Dedicated to Philippe Bénilan. J. Evol. Equ., 3 (2003), 67.   Google Scholar

[19]

J. L. Vázquez, New self-similar solutions of the porous medium equation and the theory of solutions of changing sign,, Nonlinear Anal., 15 (1990), 931.   Google Scholar

[20]

C. Villani, "Optimal Transport, Old and New,", Springer-Verlag, (2008).   Google Scholar

[1]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[2]

A. El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 253-265. doi: 10.3934/cpaa.2004.3.253

[3]

Addolorata Salvatore. Sign--changing solutions for an asymptotically linear Schrödinger equation. Conference Publications, 2009, 2009 (Special) : 669-677. doi: 10.3934/proc.2009.2009.669

[4]

Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065

[5]

Qinglan Xia. An application of optimal transport paths to urban transport networks. Conference Publications, 2005, 2005 (Special) : 904-910. doi: 10.3934/proc.2005.2005.904

[6]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[7]

Mohammad Asadzadeh, Anders Brahme, Jiping Xin. Galerkin methods for primary ion transport in inhomogeneous media. Kinetic & Related Models, 2010, 3 (3) : 373-394. doi: 10.3934/krm.2010.3.373

[8]

Daniela Giachetti, Francesco Petitta, Sergio Segura de León. Elliptic equations having a singular quadratic gradient term and a changing sign datum. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1875-1895. doi: 10.3934/cpaa.2012.11.1875

[9]

Wilfrid Gangbo, Andrzej Świech. Optimal transport and large number of particles. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1397-1441. doi: 10.3934/dcds.2014.34.1397

[10]

María Anguiano, Renata Bunoiu. Homogenization of Bingham flow in thin porous media. Networks & Heterogeneous Media, 2020, 15 (1) : 87-110. doi: 10.3934/nhm.2020004

[11]

Cedric Galusinski, Mazen Saad. Water-gas flow in porous media. Conference Publications, 2005, 2005 (Special) : 307-316. doi: 10.3934/proc.2005.2005.307

[12]

Roman Romanov. Estimates of solutions of linear neutron transport equation at large time and spectral singularities. Kinetic & Related Models, 2012, 5 (1) : 113-128. doi: 10.3934/krm.2012.5.113

[13]

Piotr Gwiazda, Sander C. Hille, Kamila Łyczek, Agnieszka Świerczewska-Gwiazda. Differentiability in perturbation parameter of measure solutions to perturbed transport equation. Kinetic & Related Models, 2019, 12 (5) : 1093-1108. doi: 10.3934/krm.2019041

[14]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[15]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[16]

Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211

[17]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[18]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[19]

Ioana Ciotir, Nicolas Forcadel, Wilfredo Salazar. Homogenization of a stochastic viscous transport equation. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020070

[20]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]