September  2012, 7(3): 543-582. doi: 10.3934/nhm.2012.7.543

Homogenization of pinning conditions on periodic networks

1. 

Dipartimento di Matematica, Università di Roma 'La Sapienza', p.le A.Moro 2, 00185 Roma, Italy

Received  June 2011 Revised  July 2012 Published  October 2012

This paper deals with the description of the overall effect of pinning conditions in discrete systems. We study a variational problem on the discrete in which pinning sites are modeled as network subsets on which concentrated forces are imposed. We want to determine the asymptotic effect of pinning conditions on a periodic lattice as its size vanishes. Our analysis is performed in the framework of $\Gamma$-convergence and highlights the analogies and differences with the corresponding continuous problem, i.e. periodically perforated domains. We derive a functional form for the limit energies which depends on the relationship between the space dimension and the growth rate of the interaction functions.
Citation: Laura Sigalotti. Homogenization of pinning conditions on periodic networks. Networks & Heterogeneous Media, 2012, 7 (3) : 543-582. doi: 10.3934/nhm.2012.7.543
References:
[1]

R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth,, SIAM J. Math Anal., 36 (2004), 1.  doi: 10.1137/S0036141003426471.  Google Scholar

[2]

R. Alicandro and M. Cicalese, Variational analysis of the asymptotics of the $XY$ model,, Arch. Rat. Mech. Anal., 192 (2009), 501.  doi: 10.1007/s00205-008-0146-0.  Google Scholar

[3]

N. Ansini and A. Braides, Asymptotic analysis of periodically-perforated nonlinear media,, J. Math. Pures Appl., 81 (2002), 439.   Google Scholar

[4]

A. Braides, "$\Gamma$-convergence for Beginners,", Oxford University Press, (2002).   Google Scholar

[5]

A. Braides, A handbook of $\Gamma$-convergence,, in, 3 (2006).   Google Scholar

[6]

A. Braides, A. Defranceschi and E. Vitali, Homogenization of free discontinuity problems,, Arch. Ration.Mech. Anal., 135 (1996), 297.  doi: 10.1007/BF02198476.  Google Scholar

[7]

A. Braides and L. Sigalotti, Models of defects in atomistic systems,, Calculus of Variations and PDE, 41 (2011), 71.  doi: 10.1007/s00526-010-0354-y.  Google Scholar

[8]

D. Cioranescu and F. Murat, Un term étrange venu d'ailleurs, I and II,, Nonlinear Partial Differential Equations and Their Applications, 60 (1982), 98.   Google Scholar

[9]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Progress in Nonlinear Differential Equations and their Applications. Birkhser Boston, (1993).   Google Scholar

[10]

G. Dal Maso, Asymptotic behaviour of solutions of Dirichlet problems,, Boll. Unione Mat. Ital., 11A (1997), 253.   Google Scholar

[11]

G. Dal Maso and A. Defranceschi, Limits of nonlinear Dirichlet problems in varying domains,, Manuscripta Math., 61 (1988), 251.  doi: 10.1007/BF01258438.  Google Scholar

[12]

G. Dal Maso and A. Garroni, New results on the asymptotic analysis of Dirichlet problems in perforated domains,, Math. Mod. Meth. Appl. Sci., 4 (1994), 373.   Google Scholar

[13]

G. Dal Maso, A. Garroni and I. V. Skrypnik, A capacitary method for the asymptotic analysis of Dirichlet problems for monotone operators,, J. Anal. Math., 71 (1997), 263.  doi: 10.1007/BF02788033.  Google Scholar

[14]

G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 293.   Google Scholar

[15]

A. Defranceschi and E. Vitali, Limits of minimum problems with convex obstacles for vector valued functions,, Appl. Anal., 52 (1994), 1.   Google Scholar

[16]

A. Garroni and S. Müller, A variational model for dislocations in the line tension limit,, Arch. Rat. Mech., 181 (2006), 535.  doi: 10.1007/s00205-006-0432-7.  Google Scholar

[17]

A. V. Marchenko and E. Ya. Khruslov, New results in the theory of boundary value problems for regions with closed-grained boundaries,, Uspekhi Math. Nauk, 33 (1978).   Google Scholar

[18]

L. Sigalotti, Asymptotic analysis of periodically perforated nonlinear media at the critical exponent,, Comm. Cont. Math., 11 (2009), 1009.  doi: 10.1142/S0219199709003648.  Google Scholar

[19]

I. V. Skrypnik, Asymptotic behaviour of solutions of nonlinear elliptic problems in perforated domains,, Math. Sb., 184 (1993), 67.   Google Scholar

show all references

References:
[1]

R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth,, SIAM J. Math Anal., 36 (2004), 1.  doi: 10.1137/S0036141003426471.  Google Scholar

[2]

R. Alicandro and M. Cicalese, Variational analysis of the asymptotics of the $XY$ model,, Arch. Rat. Mech. Anal., 192 (2009), 501.  doi: 10.1007/s00205-008-0146-0.  Google Scholar

[3]

N. Ansini and A. Braides, Asymptotic analysis of periodically-perforated nonlinear media,, J. Math. Pures Appl., 81 (2002), 439.   Google Scholar

[4]

A. Braides, "$\Gamma$-convergence for Beginners,", Oxford University Press, (2002).   Google Scholar

[5]

A. Braides, A handbook of $\Gamma$-convergence,, in, 3 (2006).   Google Scholar

[6]

A. Braides, A. Defranceschi and E. Vitali, Homogenization of free discontinuity problems,, Arch. Ration.Mech. Anal., 135 (1996), 297.  doi: 10.1007/BF02198476.  Google Scholar

[7]

A. Braides and L. Sigalotti, Models of defects in atomistic systems,, Calculus of Variations and PDE, 41 (2011), 71.  doi: 10.1007/s00526-010-0354-y.  Google Scholar

[8]

D. Cioranescu and F. Murat, Un term étrange venu d'ailleurs, I and II,, Nonlinear Partial Differential Equations and Their Applications, 60 (1982), 98.   Google Scholar

[9]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Progress in Nonlinear Differential Equations and their Applications. Birkhser Boston, (1993).   Google Scholar

[10]

G. Dal Maso, Asymptotic behaviour of solutions of Dirichlet problems,, Boll. Unione Mat. Ital., 11A (1997), 253.   Google Scholar

[11]

G. Dal Maso and A. Defranceschi, Limits of nonlinear Dirichlet problems in varying domains,, Manuscripta Math., 61 (1988), 251.  doi: 10.1007/BF01258438.  Google Scholar

[12]

G. Dal Maso and A. Garroni, New results on the asymptotic analysis of Dirichlet problems in perforated domains,, Math. Mod. Meth. Appl. Sci., 4 (1994), 373.   Google Scholar

[13]

G. Dal Maso, A. Garroni and I. V. Skrypnik, A capacitary method for the asymptotic analysis of Dirichlet problems for monotone operators,, J. Anal. Math., 71 (1997), 263.  doi: 10.1007/BF02788033.  Google Scholar

[14]

G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 293.   Google Scholar

[15]

A. Defranceschi and E. Vitali, Limits of minimum problems with convex obstacles for vector valued functions,, Appl. Anal., 52 (1994), 1.   Google Scholar

[16]

A. Garroni and S. Müller, A variational model for dislocations in the line tension limit,, Arch. Rat. Mech., 181 (2006), 535.  doi: 10.1007/s00205-006-0432-7.  Google Scholar

[17]

A. V. Marchenko and E. Ya. Khruslov, New results in the theory of boundary value problems for regions with closed-grained boundaries,, Uspekhi Math. Nauk, 33 (1978).   Google Scholar

[18]

L. Sigalotti, Asymptotic analysis of periodically perforated nonlinear media at the critical exponent,, Comm. Cont. Math., 11 (2009), 1009.  doi: 10.1142/S0219199709003648.  Google Scholar

[19]

I. V. Skrypnik, Asymptotic behaviour of solutions of nonlinear elliptic problems in perforated domains,, Math. Sb., 184 (1993), 67.   Google Scholar

[1]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[2]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[3]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[4]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[5]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[6]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[7]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[8]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[9]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[12]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[13]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[14]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[15]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[16]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[17]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[20]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]