December  2012, 7(4): 583-603. doi: 10.3934/nhm.2012.7.583

Spreading speed revisited: Analysis of a free boundary model

1. 

School of Science and Technology, University of New England, Armidale, NSW 2351, Australia, Australia, Australia

Received  January 2012 Revised  July 2012 Published  December 2012

We investigate, from a more ecological point of view, a free boundary model considered in [11] and [8] that describes the spreading of a new or invasive species, with the free boundary representing the spreading front. We derive the free boundary condition by considering a "population loss" at the spreading front, and correct some mistakes regarding the range of spreading speed in [11]. Then we use numerical simulation to gain further insights to the model, which may help to determine its usefulness in concrete ecological situations.
Citation: Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

H. Berestycki, F. Hamel and H. Matano, Bistable traveling waves around an obstacle,, Comm. Pure Appl. Math., 62 (2009), 729.  doi: 10.1002/cpa.20275.  Google Scholar

[4]

H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media,, J. Funct. Anal., 255 (2008), 2146.  doi: 10.1016/j.jfa.2008.06.030.  Google Scholar

[5]

H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. I. Periodic framework,, J. Eur. Math. Soc., 7 (2005), 173.  doi: 10.4171/JEMS/26.  Google Scholar

[6]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778.  doi: 10.1137/S0036141099351693.  Google Scholar

[7]

Y. Du, "Order Structure and Topological Methods in Nonlinear Partial Differential Equations,", 1, 1 (2006).  doi: 10.1142/9789812774446.  Google Scholar

[8]

Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, II,, J. Diff. Eqns., 250 (2011), 4336.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[9]

Y. Du and Z. M. Guo, The Stefan problem for the Fisher-KPP equation,, J. Diff. Eqns., 253 (2012), 996.  doi: 10.1016/j.jde.2012.04.014.  Google Scholar

[10]

Y. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment,, preprint, (2011).   Google Scholar

[11]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 1305.  doi: 10.1137/090771089.  Google Scholar

[12]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries,, preprint, (2011).   Google Scholar

[13]

Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems,, J. European Math. Soc., 12 (2010), 279.  doi: 10.4171/JEMS/198.  Google Scholar

[14]

X. Fauvergue, J-C. Malausa, L. Giuge and F. Courchamp, Invading parasitoids suffer no Allee effect: A manipulative field experiment,, Ecology, 88 (2008), 2392.   Google Scholar

[15]

I. Filin, R. D. Holt and M. Barfield, The relation of density regulation to habitat specialization, evolution of a speciesrange, and the dynamics of biological invasions,, Am. Nat., 172 (2008), 233.   Google Scholar

[16]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 335.   Google Scholar

[17]

K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations,, J. Math. Biol., 2 (1975), 251.   Google Scholar

[18]

D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya, A competition-diffusion system approximation to the classical two-phase Stefan problem,, Japan J. Indust. Appl. Math., 18 (2001), 161.  doi: 10.1007/BF03168569.  Google Scholar

[19]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Ètude de l'équation de la diffusion avec croissance de la quantitéde matière et son application à un problème biologique,, Bull. Univ. Moscou Sér. Internat. A1 (1937), A1 (1937), 1.   Google Scholar

[20]

A. M. Kramer, B. Dennis, A. M. Liebhold and J. M. Drake, The evidence for Allee effects,, Popul. Ecol., 51 (2009), 341.   Google Scholar

[21]

M. A. Lewis and P. Kareiva, Allee dynamics and the spreading of invasive organisms,, Theor. Population Bio., 43 (1993), 141.   Google Scholar

[22]

X. Liang and X-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[23]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[24]

J. L. Lockwood, M. F. Hoopes and M. P. Marchetti, "Invasion Ecology,", Blackwell Publishing, (2007).   Google Scholar

[25]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151.  doi: 10.1007/BF03167042.  Google Scholar

[26]

R. Peng and X. Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession,, Discrete Cont. Dyn. Syst. A., ().   Google Scholar

[27]

L. I. Rubinstein, "The Stefan Problem,", Amer. Math. Soc., (1971).   Google Scholar

[28]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford Series in Ecology and Evolution, (1997).   Google Scholar

[29]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.   Google Scholar

[30]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511.  doi: 10.1007/s00285-002-0169-3.  Google Scholar

[31]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

[32]

J. X. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.  doi: 10.1137/S0036144599364296.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

H. Berestycki, F. Hamel and H. Matano, Bistable traveling waves around an obstacle,, Comm. Pure Appl. Math., 62 (2009), 729.  doi: 10.1002/cpa.20275.  Google Scholar

[4]

H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media,, J. Funct. Anal., 255 (2008), 2146.  doi: 10.1016/j.jfa.2008.06.030.  Google Scholar

[5]

H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. I. Periodic framework,, J. Eur. Math. Soc., 7 (2005), 173.  doi: 10.4171/JEMS/26.  Google Scholar

[6]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778.  doi: 10.1137/S0036141099351693.  Google Scholar

[7]

Y. Du, "Order Structure and Topological Methods in Nonlinear Partial Differential Equations,", 1, 1 (2006).  doi: 10.1142/9789812774446.  Google Scholar

[8]

Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, II,, J. Diff. Eqns., 250 (2011), 4336.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[9]

Y. Du and Z. M. Guo, The Stefan problem for the Fisher-KPP equation,, J. Diff. Eqns., 253 (2012), 996.  doi: 10.1016/j.jde.2012.04.014.  Google Scholar

[10]

Y. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment,, preprint, (2011).   Google Scholar

[11]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 1305.  doi: 10.1137/090771089.  Google Scholar

[12]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries,, preprint, (2011).   Google Scholar

[13]

Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems,, J. European Math. Soc., 12 (2010), 279.  doi: 10.4171/JEMS/198.  Google Scholar

[14]

X. Fauvergue, J-C. Malausa, L. Giuge and F. Courchamp, Invading parasitoids suffer no Allee effect: A manipulative field experiment,, Ecology, 88 (2008), 2392.   Google Scholar

[15]

I. Filin, R. D. Holt and M. Barfield, The relation of density regulation to habitat specialization, evolution of a speciesrange, and the dynamics of biological invasions,, Am. Nat., 172 (2008), 233.   Google Scholar

[16]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 335.   Google Scholar

[17]

K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations,, J. Math. Biol., 2 (1975), 251.   Google Scholar

[18]

D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya, A competition-diffusion system approximation to the classical two-phase Stefan problem,, Japan J. Indust. Appl. Math., 18 (2001), 161.  doi: 10.1007/BF03168569.  Google Scholar

[19]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Ètude de l'équation de la diffusion avec croissance de la quantitéde matière et son application à un problème biologique,, Bull. Univ. Moscou Sér. Internat. A1 (1937), A1 (1937), 1.   Google Scholar

[20]

A. M. Kramer, B. Dennis, A. M. Liebhold and J. M. Drake, The evidence for Allee effects,, Popul. Ecol., 51 (2009), 341.   Google Scholar

[21]

M. A. Lewis and P. Kareiva, Allee dynamics and the spreading of invasive organisms,, Theor. Population Bio., 43 (1993), 141.   Google Scholar

[22]

X. Liang and X-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[23]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[24]

J. L. Lockwood, M. F. Hoopes and M. P. Marchetti, "Invasion Ecology,", Blackwell Publishing, (2007).   Google Scholar

[25]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151.  doi: 10.1007/BF03167042.  Google Scholar

[26]

R. Peng and X. Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession,, Discrete Cont. Dyn. Syst. A., ().   Google Scholar

[27]

L. I. Rubinstein, "The Stefan Problem,", Amer. Math. Soc., (1971).   Google Scholar

[28]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford Series in Ecology and Evolution, (1997).   Google Scholar

[29]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.   Google Scholar

[30]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511.  doi: 10.1007/s00285-002-0169-3.  Google Scholar

[31]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

[32]

J. X. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.  doi: 10.1137/S0036144599364296.  Google Scholar

[1]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[2]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[3]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[6]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[8]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[9]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[16]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (93)

Other articles
by authors

[Back to Top]