December  2012, 7(4): 583-603. doi: 10.3934/nhm.2012.7.583

Spreading speed revisited: Analysis of a free boundary model

1. 

School of Science and Technology, University of New England, Armidale, NSW 2351, Australia, Australia, Australia

Received  January 2012 Revised  July 2012 Published  December 2012

We investigate, from a more ecological point of view, a free boundary model considered in [11] and [8] that describes the spreading of a new or invasive species, with the free boundary representing the spreading front. We derive the free boundary condition by considering a "population loss" at the spreading front, and correct some mistakes regarding the range of spreading speed in [11]. Then we use numerical simulation to gain further insights to the model, which may help to determine its usefulness in concrete ecological situations.
Citation: Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

H. Berestycki, F. Hamel and H. Matano, Bistable traveling waves around an obstacle,, Comm. Pure Appl. Math., 62 (2009), 729.  doi: 10.1002/cpa.20275.  Google Scholar

[4]

H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media,, J. Funct. Anal., 255 (2008), 2146.  doi: 10.1016/j.jfa.2008.06.030.  Google Scholar

[5]

H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. I. Periodic framework,, J. Eur. Math. Soc., 7 (2005), 173.  doi: 10.4171/JEMS/26.  Google Scholar

[6]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778.  doi: 10.1137/S0036141099351693.  Google Scholar

[7]

Y. Du, "Order Structure and Topological Methods in Nonlinear Partial Differential Equations,", 1, 1 (2006).  doi: 10.1142/9789812774446.  Google Scholar

[8]

Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, II,, J. Diff. Eqns., 250 (2011), 4336.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[9]

Y. Du and Z. M. Guo, The Stefan problem for the Fisher-KPP equation,, J. Diff. Eqns., 253 (2012), 996.  doi: 10.1016/j.jde.2012.04.014.  Google Scholar

[10]

Y. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment,, preprint, (2011).   Google Scholar

[11]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 1305.  doi: 10.1137/090771089.  Google Scholar

[12]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries,, preprint, (2011).   Google Scholar

[13]

Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems,, J. European Math. Soc., 12 (2010), 279.  doi: 10.4171/JEMS/198.  Google Scholar

[14]

X. Fauvergue, J-C. Malausa, L. Giuge and F. Courchamp, Invading parasitoids suffer no Allee effect: A manipulative field experiment,, Ecology, 88 (2008), 2392.   Google Scholar

[15]

I. Filin, R. D. Holt and M. Barfield, The relation of density regulation to habitat specialization, evolution of a speciesrange, and the dynamics of biological invasions,, Am. Nat., 172 (2008), 233.   Google Scholar

[16]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 335.   Google Scholar

[17]

K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations,, J. Math. Biol., 2 (1975), 251.   Google Scholar

[18]

D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya, A competition-diffusion system approximation to the classical two-phase Stefan problem,, Japan J. Indust. Appl. Math., 18 (2001), 161.  doi: 10.1007/BF03168569.  Google Scholar

[19]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Ètude de l'équation de la diffusion avec croissance de la quantitéde matière et son application à un problème biologique,, Bull. Univ. Moscou Sér. Internat. A1 (1937), A1 (1937), 1.   Google Scholar

[20]

A. M. Kramer, B. Dennis, A. M. Liebhold and J. M. Drake, The evidence for Allee effects,, Popul. Ecol., 51 (2009), 341.   Google Scholar

[21]

M. A. Lewis and P. Kareiva, Allee dynamics and the spreading of invasive organisms,, Theor. Population Bio., 43 (1993), 141.   Google Scholar

[22]

X. Liang and X-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[23]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[24]

J. L. Lockwood, M. F. Hoopes and M. P. Marchetti, "Invasion Ecology,", Blackwell Publishing, (2007).   Google Scholar

[25]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151.  doi: 10.1007/BF03167042.  Google Scholar

[26]

R. Peng and X. Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession,, Discrete Cont. Dyn. Syst. A., ().   Google Scholar

[27]

L. I. Rubinstein, "The Stefan Problem,", Amer. Math. Soc., (1971).   Google Scholar

[28]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford Series in Ecology and Evolution, (1997).   Google Scholar

[29]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.   Google Scholar

[30]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511.  doi: 10.1007/s00285-002-0169-3.  Google Scholar

[31]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

[32]

J. X. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.  doi: 10.1137/S0036144599364296.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

H. Berestycki, F. Hamel and H. Matano, Bistable traveling waves around an obstacle,, Comm. Pure Appl. Math., 62 (2009), 729.  doi: 10.1002/cpa.20275.  Google Scholar

[4]

H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media,, J. Funct. Anal., 255 (2008), 2146.  doi: 10.1016/j.jfa.2008.06.030.  Google Scholar

[5]

H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. I. Periodic framework,, J. Eur. Math. Soc., 7 (2005), 173.  doi: 10.4171/JEMS/26.  Google Scholar

[6]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778.  doi: 10.1137/S0036141099351693.  Google Scholar

[7]

Y. Du, "Order Structure and Topological Methods in Nonlinear Partial Differential Equations,", 1, 1 (2006).  doi: 10.1142/9789812774446.  Google Scholar

[8]

Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, II,, J. Diff. Eqns., 250 (2011), 4336.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[9]

Y. Du and Z. M. Guo, The Stefan problem for the Fisher-KPP equation,, J. Diff. Eqns., 253 (2012), 996.  doi: 10.1016/j.jde.2012.04.014.  Google Scholar

[10]

Y. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment,, preprint, (2011).   Google Scholar

[11]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 1305.  doi: 10.1137/090771089.  Google Scholar

[12]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries,, preprint, (2011).   Google Scholar

[13]

Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems,, J. European Math. Soc., 12 (2010), 279.  doi: 10.4171/JEMS/198.  Google Scholar

[14]

X. Fauvergue, J-C. Malausa, L. Giuge and F. Courchamp, Invading parasitoids suffer no Allee effect: A manipulative field experiment,, Ecology, 88 (2008), 2392.   Google Scholar

[15]

I. Filin, R. D. Holt and M. Barfield, The relation of density regulation to habitat specialization, evolution of a speciesrange, and the dynamics of biological invasions,, Am. Nat., 172 (2008), 233.   Google Scholar

[16]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 335.   Google Scholar

[17]

K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations,, J. Math. Biol., 2 (1975), 251.   Google Scholar

[18]

D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya, A competition-diffusion system approximation to the classical two-phase Stefan problem,, Japan J. Indust. Appl. Math., 18 (2001), 161.  doi: 10.1007/BF03168569.  Google Scholar

[19]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Ètude de l'équation de la diffusion avec croissance de la quantitéde matière et son application à un problème biologique,, Bull. Univ. Moscou Sér. Internat. A1 (1937), A1 (1937), 1.   Google Scholar

[20]

A. M. Kramer, B. Dennis, A. M. Liebhold and J. M. Drake, The evidence for Allee effects,, Popul. Ecol., 51 (2009), 341.   Google Scholar

[21]

M. A. Lewis and P. Kareiva, Allee dynamics and the spreading of invasive organisms,, Theor. Population Bio., 43 (1993), 141.   Google Scholar

[22]

X. Liang and X-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[23]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[24]

J. L. Lockwood, M. F. Hoopes and M. P. Marchetti, "Invasion Ecology,", Blackwell Publishing, (2007).   Google Scholar

[25]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151.  doi: 10.1007/BF03167042.  Google Scholar

[26]

R. Peng and X. Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession,, Discrete Cont. Dyn. Syst. A., ().   Google Scholar

[27]

L. I. Rubinstein, "The Stefan Problem,", Amer. Math. Soc., (1971).   Google Scholar

[28]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford Series in Ecology and Evolution, (1997).   Google Scholar

[29]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.   Google Scholar

[30]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511.  doi: 10.1007/s00285-002-0169-3.  Google Scholar

[31]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

[32]

J. X. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.  doi: 10.1137/S0036144599364296.  Google Scholar

[1]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[2]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[3]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[4]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[5]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[6]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[7]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[8]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[9]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[10]

Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135

[11]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[12]

Hai-Yang Jin, Zhi-An Wang. The Keller-Segel system with logistic growth and signal-dependent motility. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3023-3041. doi: 10.3934/dcdsb.2020218

[13]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[14]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[15]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[16]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[17]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[18]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[19]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[20]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (93)

Other articles
by authors

[Back to Top]