March  2012, 7(1): 59-69. doi: 10.3934/nhm.2012.7.59

A sufficient condition for classified networks to possess complex network features

1. 

College of Science, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China, China, China

2. 

College of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210046, China

Received  March 2011 Revised  December 2011 Published  February 2012

We investigate network features for complex networks. A sufficient condition for the limiting random variable to possess the scale free property and the high clustering property is given. The uniqueness and existence of the limit of a sequence of degree distributions for the process is proved. The limiting degree distribution and a lower bound of the limiting clustering coefficient of the graph-valued Markov process are obtained as well.
Citation: Xianmin Geng, Shengli Zhou, Jiashan Tang, Cong Yang. A sufficient condition for classified networks to possess complex network features. Networks & Heterogeneous Media, 2012, 7 (1) : 59-69. doi: 10.3934/nhm.2012.7.59
References:
[1]

R. Albert and A.-L. Barabási, Emergence of scaling in random networks,, Science, 286 (1999), 509.  doi: 10.1126/science.286.5439.509.  Google Scholar

[2]

R. Albert and A.-L. Barabási, Statistical mechanics of complex networks,, Reviews of Mordern Physics, 74 (2002), 47.  doi: 10.1103/RevModPhys.74.47.  Google Scholar

[3]

D. J. Aldous, A tractable complex network model based on the stochastic mean-field model of distance,, in, 650 (2004), 51.   Google Scholar

[4]

D. J. Aldous and W. S. Kendall, Short-length routes in low-cost networks via Poisson line patterns,, Advances in Applied Probability, 40 (2008), 1.  doi: 10.1239/aap/1208358883.  Google Scholar

[5]

H. G. Bartel, H. J. Mucha and J. Dolata, On a modified graph-theoretic partitioning method of cluster analysis,, Match-Communications in Mathematical and in Computer Chemistry, 48 (2003), 209.   Google Scholar

[6]

B. Bollobás, S. Janson and O. Riordan, The phase transition in inhomogeneous random graphs,, Random Structures and Algorithms, 31 (2007), 3.  doi: 10.1002/rsa.20168.  Google Scholar

[7]

A. Diaz-Guilera, Complex networks: Statics and dynamics,, Advanced Summer School in Physics 2006, 885 (2007), 107.   Google Scholar

[8]

Z. P. Fan, G. R. Chen and Y. N. Zhang, A comprehensive multi-local-world model for complex networks,, Physics Letters A, 373 (2009), 1601.  doi: 10.1016/j.physleta.2009.02.072.  Google Scholar

[9]

A. Ganesh and F. Xue, On the connectivity and diameter of small-world networks,, Advances in Applied Probability, 39 (2007), 853.  doi: 10.1239/aap/1198177228.  Google Scholar

[10]

P. Holme and B. J. Kim, Growing scale-free networks with tunable clustering,, Physical Review E, 65 (2002).   Google Scholar

[11]

G. Lee and G. I. Kim, Degree and wealth distribution in a network,, Physica A-Statistical Mechanics and its Applications, 383 (2007), 677.   Google Scholar

[12]

N. Miyoshi, T. Shigezumi, R. Uehara and O. Watanabe, Scale free interval graphs,, Theoretical Computer Science, 410 (2009), 4588.  doi: 10.1016/j.tcs.2009.08.012.  Google Scholar

[13]

Y. Ou and C.-Q. Zhang, A new multimembership clustering method,, Journal of Industrial and Management Optimization, 3 (2007), 619.  doi: 10.3934/jimo.2007.3.619.  Google Scholar

[14]

M. M. Sørensen, b-tree facets for the simple graph partitioning polytope,, Journal of Combinatorial Optimization, 8 (2004), 151.  doi: 10.1023/B:JOCO.0000031417.96218.26.  Google Scholar

[15]

J. Szymański, Concentration of vertex degrees in a scale-free random graph process,, Random Structures and Algorithms, 26 (2005), 224.  doi: 10.1002/rsa.20065.  Google Scholar

[16]

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks,, Nature, 393 (1998), 440.  doi: 10.1038/30918.  Google Scholar

show all references

References:
[1]

R. Albert and A.-L. Barabási, Emergence of scaling in random networks,, Science, 286 (1999), 509.  doi: 10.1126/science.286.5439.509.  Google Scholar

[2]

R. Albert and A.-L. Barabási, Statistical mechanics of complex networks,, Reviews of Mordern Physics, 74 (2002), 47.  doi: 10.1103/RevModPhys.74.47.  Google Scholar

[3]

D. J. Aldous, A tractable complex network model based on the stochastic mean-field model of distance,, in, 650 (2004), 51.   Google Scholar

[4]

D. J. Aldous and W. S. Kendall, Short-length routes in low-cost networks via Poisson line patterns,, Advances in Applied Probability, 40 (2008), 1.  doi: 10.1239/aap/1208358883.  Google Scholar

[5]

H. G. Bartel, H. J. Mucha and J. Dolata, On a modified graph-theoretic partitioning method of cluster analysis,, Match-Communications in Mathematical and in Computer Chemistry, 48 (2003), 209.   Google Scholar

[6]

B. Bollobás, S. Janson and O. Riordan, The phase transition in inhomogeneous random graphs,, Random Structures and Algorithms, 31 (2007), 3.  doi: 10.1002/rsa.20168.  Google Scholar

[7]

A. Diaz-Guilera, Complex networks: Statics and dynamics,, Advanced Summer School in Physics 2006, 885 (2007), 107.   Google Scholar

[8]

Z. P. Fan, G. R. Chen and Y. N. Zhang, A comprehensive multi-local-world model for complex networks,, Physics Letters A, 373 (2009), 1601.  doi: 10.1016/j.physleta.2009.02.072.  Google Scholar

[9]

A. Ganesh and F. Xue, On the connectivity and diameter of small-world networks,, Advances in Applied Probability, 39 (2007), 853.  doi: 10.1239/aap/1198177228.  Google Scholar

[10]

P. Holme and B. J. Kim, Growing scale-free networks with tunable clustering,, Physical Review E, 65 (2002).   Google Scholar

[11]

G. Lee and G. I. Kim, Degree and wealth distribution in a network,, Physica A-Statistical Mechanics and its Applications, 383 (2007), 677.   Google Scholar

[12]

N. Miyoshi, T. Shigezumi, R. Uehara and O. Watanabe, Scale free interval graphs,, Theoretical Computer Science, 410 (2009), 4588.  doi: 10.1016/j.tcs.2009.08.012.  Google Scholar

[13]

Y. Ou and C.-Q. Zhang, A new multimembership clustering method,, Journal of Industrial and Management Optimization, 3 (2007), 619.  doi: 10.3934/jimo.2007.3.619.  Google Scholar

[14]

M. M. Sørensen, b-tree facets for the simple graph partitioning polytope,, Journal of Combinatorial Optimization, 8 (2004), 151.  doi: 10.1023/B:JOCO.0000031417.96218.26.  Google Scholar

[15]

J. Szymański, Concentration of vertex degrees in a scale-free random graph process,, Random Structures and Algorithms, 26 (2005), 224.  doi: 10.1002/rsa.20065.  Google Scholar

[16]

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks,, Nature, 393 (1998), 440.  doi: 10.1038/30918.  Google Scholar

[1]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[2]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[3]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[4]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[5]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295

[6]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[7]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[8]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[9]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[10]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[11]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[12]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[13]

Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363

[14]

Aurelia Dymek. Proximality of multidimensional $ \mathscr{B} $-free systems. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021013

[15]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[16]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[17]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[18]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[19]

Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049

[20]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]