December  2012, 7(4): 605-615. doi: 10.3934/nhm.2012.7.605

On the optimal control for a semilinear equation with cost depending on the free boundary

1. 

Dept. de Matemática Aplicada, Fac. de Matemáticas, Univ. Complutense de Madrid, Madrid, 28040, Spain, Spain, Spain

Received  January 2012 Revised  September 2012 Published  December 2012

We study an optimal control problem for a semilinear elliptic boundary value problem giving rise to a free boundary. Here, the free boundary is generated due to the fact that the nonlinear term of the state equation is not differentiable. The new aspect considered in this paper, with respect to other control problems involving free boundaries, is that here the cost functional explicitly depends on the location of the free boundary. The main difficulty is to show the continuous dependence (in measure) of the free boundary with respect to the control function. The crucial tool to get such continuous dependence is to know how behaves the state solution near the free boundary, as in previous works by L.A. Caffarelli and D. Phillips among other authors. Here we improved previous results in the literature thanks to a suitable application of the Fleming-Rishel formula.
Citation: Jésus Ildefonso Díaz, Tommaso Mingazzini, Ángel Manuel Ramos. On the optimal control for a semilinear equation with cost depending on the free boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 605-615. doi: 10.3934/nhm.2012.7.605
References:
[1]

F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous,, J. Amer. Math. Soc., 2 (1989), 683.  doi: 10.2307/1990893.  Google Scholar

[2]

L. Álvarez, On the behavior of the free boundary of some nonhomogeneous elliptic problems,, Appl. Anal., 36 (1990), 131.  doi: 10.1080/00036819008839927.  Google Scholar

[3]

L. Álvarez and J. I. Díaz, On the behaviour near the free boundary of solutions of some non homogeneous elliptic problems,, in, (1987), 55.   Google Scholar

[4]

L. Álvarez and J. I. Díaz, On the retention of the interfaces in some elliptic and parabolic problems,, Discrete and Continuous Dynamical Systems, 25 (2009), 1.  doi: 10.3934/dcds.2009.25.1.  Google Scholar

[5]

R. Aris, "The Mathematical Theory of Diffusion and Reaction in Permeable Catalysis,", Clarendon Press, (1975).   Google Scholar

[6]

H. W. Alt and D. Phillips, A free boundary problem for semilinear elliptic equations,, J. Reine Angew. Math., 368 (1986), 63.   Google Scholar

[7]

V. Barbu, "Optimal Control of Variational Inequalities,", Pitman Res. Notes Math., 100 (1984).   Google Scholar

[8]

A. Bermúdez, C. Rodríguez, M. E. Vázquez and A. Martínez, Mathematical modelling and optimal control methods in waste water discharges,, in, (2004), 7.   Google Scholar

[9]

T. Bleninger and G. H. Jirka, Modelling and environmentally sound management of brine discharges from desalination plants,, Desalination, 221 (2008), 585.   Google Scholar

[10]

F. Brezzi and L. A. Caffarelli, Convergence of the discrete free boundaries for finite element approximations,, RAIRO Anal. Numér., 17 (1983), 385.   Google Scholar

[11]

L. A. Caffarelli, Compactness methods in free boundary problems,, Comm. Partial Differential Equations, 5 (1980), 427.  doi: 10.1080/0360530800882144.  Google Scholar

[12]

L. A. Caffarelli, A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets,, Boll. Un. Mat. Ital. A (5), 18 (1981), 109.   Google Scholar

[13]

X.-Y. Chen, H. Matano and M. Mimura, Finite-point extinction and continuity of interfaces in a nonlinear diffusion equation with strong absorption,, J. Reine Angew. Math., 459 (1995), 1.   Google Scholar

[14]

S. Challal, A. Lyaghfouri and J. F. Rodrigues, On the A-obstacle problem and the Hausdorff measure of its free boundary,, Annali di Matematica, 191 (2012), 113.  doi: 10.1007/s10231-010-0177-7.  Google Scholar

[15]

C. Conca, J. I. Díaz, A. Liñan and C. Timofte, Homogenization in chemical Rreactive flows,, Electr. J. Diff. Eqns., 40 (2004), 1.   Google Scholar

[16]

J. I. Díaz, "Nonlinear Partial Differential Equations and Free Boundaries,", Pitman, 106 (1985).   Google Scholar

[17]

J. I. Díaz, Two problems in homogenization of porous media,, Extracta Mathematica, 14 (1999), 141.   Google Scholar

[18]

J. I. Díaz, T. Mingazzini and A. M. Ramos, On an optimal control problem involving the location of a free boundary,, Proceedings of the XII Congreso de Ecuaciones Diferenciales Y Aplicaciones /Congreso de Matematica Aplicada (Palma de Mallorca, (2011).   Google Scholar

[19]

J. I. Díaz and A. M. Ramos, Numerical experiments regarding the distributed control of semilinear parabolic problems,, Computers and Mathematics with Applications, 48 (2004), 1575.  doi: 10.1016/j.camwa.2004.04.033.  Google Scholar

[20]

J. I. Díaz, J. M. Sánchez, N. Sánchez, M. Veneros and D. Zarzo, Modeling of brine discharges using both a pilot plant and differential equations,, To appear in the proceedings of IDA World Congress - Perth Convention and Exhibition Centre (PCEC), (2011).   Google Scholar

[21]

M. G. Garroni and M. A. Vivaldi, Stability of free boundaries,, Nonlinear Analysis, 12 (1998), 1339.  doi: 10.1016/0362-546X(88)90082-X.  Google Scholar

[22]

H. W. Gómez, I. Colominas, F. L. Navarrina and M. Casteleiro, A hyperbolic model for convection-diffusion transport problems in CFD: numerical analysis and applications,, Revista de la Real Academia de Ciencias Exactas, 102 (2008), 319.  doi: 10.1007/BF03191826.  Google Scholar

[23]

A. Henrot and M. Pierre, "Variation et Optimisation de Formes. Une Analyse Géométrique, Mathématiques & Applications,", Springer, 48 (2005).   Google Scholar

[24]

D. Kinderlehrer and G. Stampacchia, "An Introduction to Variational Inequalities and Their Applications,", Academic Press, (1980).   Google Scholar

[25]

A. Niepelt, "Development of Interfaces for the Coupling of Hydrodynamic Models for Brine Discharges from Desalination Plants,", Ph.D thesis, (2007).   Google Scholar

[26]

R. H. Nochetto, "Aproximación de Problemas Elípticos de Frontera Libre,", Publicaciones del Depto. Ecuaciones Funcionales, (1985).   Google Scholar

[27]

R. H. Nochetto, A note on the approximation of free boundaries by finite element methods,, RAIRO Modél. Math. Anal., 20 (1986), 355.   Google Scholar

[28]

D. Phillips, Hausdorff measure estimates of a free boundary for a minimum problem,, Comm. Part. Diff. Eq., 8 (1983), 1409.  doi: 10.1080/03605308308820309.  Google Scholar

[29]

R. Pinsky, The dead core for reaction-diffusion equations with convection and its connection with the first exit time of the related Markov diffusion process,, Nonlinear Anal., 12 (1988), 451.  doi: 10.1016/0362-546X(88)90043-0.  Google Scholar

[30]

R. Pinsky, The interplay of nonlinear reaction and convection in dead core behavior for reaction-diffusion equations,, Nonlinear Anal., 18 (1992), 1113.  doi: 10.1016/0362-546X(92)90156-9.  Google Scholar

[31]

J. Sokolowski and J. P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis,", Springer Series in Computational Mathematics, 16 (1992).  doi: 10.1007/978-3-642-58106-9.  Google Scholar

[32]

J. M. Rakotoson, "Rearrangement Relatif: un Instrument D'estimations dans les Problemes aux Limites,", Mathematiques & Applications, (2008).  doi: 10.1007/978-3-540-69118-1.  Google Scholar

[33]

J. F. Rodrigues, "Obstacle Problems in Mathematical Physics,", North-Holland Mathematics Studies, 134 (1987).   Google Scholar

[34]

J. F. Rodrigues and B. Zaltzman, Free boundary optimal control in the multidimensional Stefan problem,, in, 323 (1993), 186.   Google Scholar

[35]

D. Tiba, Controllability properties for elliptic systems,, International Conference on Differential Equations, 1 (1991), 932.   Google Scholar

show all references

References:
[1]

F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous,, J. Amer. Math. Soc., 2 (1989), 683.  doi: 10.2307/1990893.  Google Scholar

[2]

L. Álvarez, On the behavior of the free boundary of some nonhomogeneous elliptic problems,, Appl. Anal., 36 (1990), 131.  doi: 10.1080/00036819008839927.  Google Scholar

[3]

L. Álvarez and J. I. Díaz, On the behaviour near the free boundary of solutions of some non homogeneous elliptic problems,, in, (1987), 55.   Google Scholar

[4]

L. Álvarez and J. I. Díaz, On the retention of the interfaces in some elliptic and parabolic problems,, Discrete and Continuous Dynamical Systems, 25 (2009), 1.  doi: 10.3934/dcds.2009.25.1.  Google Scholar

[5]

R. Aris, "The Mathematical Theory of Diffusion and Reaction in Permeable Catalysis,", Clarendon Press, (1975).   Google Scholar

[6]

H. W. Alt and D. Phillips, A free boundary problem for semilinear elliptic equations,, J. Reine Angew. Math., 368 (1986), 63.   Google Scholar

[7]

V. Barbu, "Optimal Control of Variational Inequalities,", Pitman Res. Notes Math., 100 (1984).   Google Scholar

[8]

A. Bermúdez, C. Rodríguez, M. E. Vázquez and A. Martínez, Mathematical modelling and optimal control methods in waste water discharges,, in, (2004), 7.   Google Scholar

[9]

T. Bleninger and G. H. Jirka, Modelling and environmentally sound management of brine discharges from desalination plants,, Desalination, 221 (2008), 585.   Google Scholar

[10]

F. Brezzi and L. A. Caffarelli, Convergence of the discrete free boundaries for finite element approximations,, RAIRO Anal. Numér., 17 (1983), 385.   Google Scholar

[11]

L. A. Caffarelli, Compactness methods in free boundary problems,, Comm. Partial Differential Equations, 5 (1980), 427.  doi: 10.1080/0360530800882144.  Google Scholar

[12]

L. A. Caffarelli, A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets,, Boll. Un. Mat. Ital. A (5), 18 (1981), 109.   Google Scholar

[13]

X.-Y. Chen, H. Matano and M. Mimura, Finite-point extinction and continuity of interfaces in a nonlinear diffusion equation with strong absorption,, J. Reine Angew. Math., 459 (1995), 1.   Google Scholar

[14]

S. Challal, A. Lyaghfouri and J. F. Rodrigues, On the A-obstacle problem and the Hausdorff measure of its free boundary,, Annali di Matematica, 191 (2012), 113.  doi: 10.1007/s10231-010-0177-7.  Google Scholar

[15]

C. Conca, J. I. Díaz, A. Liñan and C. Timofte, Homogenization in chemical Rreactive flows,, Electr. J. Diff. Eqns., 40 (2004), 1.   Google Scholar

[16]

J. I. Díaz, "Nonlinear Partial Differential Equations and Free Boundaries,", Pitman, 106 (1985).   Google Scholar

[17]

J. I. Díaz, Two problems in homogenization of porous media,, Extracta Mathematica, 14 (1999), 141.   Google Scholar

[18]

J. I. Díaz, T. Mingazzini and A. M. Ramos, On an optimal control problem involving the location of a free boundary,, Proceedings of the XII Congreso de Ecuaciones Diferenciales Y Aplicaciones /Congreso de Matematica Aplicada (Palma de Mallorca, (2011).   Google Scholar

[19]

J. I. Díaz and A. M. Ramos, Numerical experiments regarding the distributed control of semilinear parabolic problems,, Computers and Mathematics with Applications, 48 (2004), 1575.  doi: 10.1016/j.camwa.2004.04.033.  Google Scholar

[20]

J. I. Díaz, J. M. Sánchez, N. Sánchez, M. Veneros and D. Zarzo, Modeling of brine discharges using both a pilot plant and differential equations,, To appear in the proceedings of IDA World Congress - Perth Convention and Exhibition Centre (PCEC), (2011).   Google Scholar

[21]

M. G. Garroni and M. A. Vivaldi, Stability of free boundaries,, Nonlinear Analysis, 12 (1998), 1339.  doi: 10.1016/0362-546X(88)90082-X.  Google Scholar

[22]

H. W. Gómez, I. Colominas, F. L. Navarrina and M. Casteleiro, A hyperbolic model for convection-diffusion transport problems in CFD: numerical analysis and applications,, Revista de la Real Academia de Ciencias Exactas, 102 (2008), 319.  doi: 10.1007/BF03191826.  Google Scholar

[23]

A. Henrot and M. Pierre, "Variation et Optimisation de Formes. Une Analyse Géométrique, Mathématiques & Applications,", Springer, 48 (2005).   Google Scholar

[24]

D. Kinderlehrer and G. Stampacchia, "An Introduction to Variational Inequalities and Their Applications,", Academic Press, (1980).   Google Scholar

[25]

A. Niepelt, "Development of Interfaces for the Coupling of Hydrodynamic Models for Brine Discharges from Desalination Plants,", Ph.D thesis, (2007).   Google Scholar

[26]

R. H. Nochetto, "Aproximación de Problemas Elípticos de Frontera Libre,", Publicaciones del Depto. Ecuaciones Funcionales, (1985).   Google Scholar

[27]

R. H. Nochetto, A note on the approximation of free boundaries by finite element methods,, RAIRO Modél. Math. Anal., 20 (1986), 355.   Google Scholar

[28]

D. Phillips, Hausdorff measure estimates of a free boundary for a minimum problem,, Comm. Part. Diff. Eq., 8 (1983), 1409.  doi: 10.1080/03605308308820309.  Google Scholar

[29]

R. Pinsky, The dead core for reaction-diffusion equations with convection and its connection with the first exit time of the related Markov diffusion process,, Nonlinear Anal., 12 (1988), 451.  doi: 10.1016/0362-546X(88)90043-0.  Google Scholar

[30]

R. Pinsky, The interplay of nonlinear reaction and convection in dead core behavior for reaction-diffusion equations,, Nonlinear Anal., 18 (1992), 1113.  doi: 10.1016/0362-546X(92)90156-9.  Google Scholar

[31]

J. Sokolowski and J. P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis,", Springer Series in Computational Mathematics, 16 (1992).  doi: 10.1007/978-3-642-58106-9.  Google Scholar

[32]

J. M. Rakotoson, "Rearrangement Relatif: un Instrument D'estimations dans les Problemes aux Limites,", Mathematiques & Applications, (2008).  doi: 10.1007/978-3-540-69118-1.  Google Scholar

[33]

J. F. Rodrigues, "Obstacle Problems in Mathematical Physics,", North-Holland Mathematics Studies, 134 (1987).   Google Scholar

[34]

J. F. Rodrigues and B. Zaltzman, Free boundary optimal control in the multidimensional Stefan problem,, in, 323 (1993), 186.   Google Scholar

[35]

D. Tiba, Controllability properties for elliptic systems,, International Conference on Differential Equations, 1 (1991), 932.   Google Scholar

[1]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[2]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[3]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[6]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[7]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[8]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[9]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[10]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[11]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282

[12]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[13]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[14]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[15]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[16]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[17]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[18]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[19]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[20]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (1)

[Back to Top]