December  2012, 7(4): 617-659. doi: 10.3934/nhm.2012.7.617

Sturm global attractors for $S^1$-equivariant parabolic equations

1. 

Freie Universität Berlin, Institut für Mathematik I, Arnimallee 2-6, D-14195 Berlin, Germany

2. 

Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Instituto Superior Técnico, Departamento de Matemática, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal, Portugal

Received  January 2012 Published  December 2012

We consider a semilinear parabolic equation of the form $u_t = u_{xx} + f(u,u_x)$ defined on the circle $x ∈ S^1=\mathbb{R}/2\pi\mathbb{Z}$. For a dissipative nonlinearity $f$ this equation generates a dissipative semiflow in the appropriate function space, and the corresponding global attractor $A_f$ is called a Sturm attractor. If $f=f(u,p)$ is even in $p$, then the semiflow possesses an embedded flow satisfying Neumann boundary conditions on the half-interval $(0,\pi)$. This is due to $O(2)$ equivariance of the semiflow and, more specifically, due to reflection at the axis through $x=0,\pi\in S^1$. For general $f=f(u,p)$, where only $SO(2)$ equivariance prevails, we will nevertheless use the Sturm permutation $\sigma$ introduced for the characterization of Neumann flows to obtain a purely combinatorial characterization of the Sturm attractors $A_f$ on the circle. With this Sturm permutation $\sigma$ we then enumerate and describe the heteroclinic connections of all Morse-Smale attractors $A_f$ with $m$ stationary solutions and $q$ periodic orbits, up to $n:=m+2q \le 9$.
Citation: Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617
References:
[1]

Benjamin, New York, 1967.  Google Scholar

[2]

J. Differential Equations, 62 (1986), 427-442. doi: 10.1016/0022-0396(86)90093-8.  Google Scholar

[3]

J. Reine Angew. Math., 390 (1988), 79-96. doi: 10.1515/crll.1988.390.79.  Google Scholar

[4]

Trans. Amer. Math. Soc., 307 (1988), 545-568. doi: 10.2307/2001188.  Google Scholar

[5]

Siberian Math. J., 29 (1988)(1989), 717-726. doi: 10.1007/BF00970265.  Google Scholar

[6]

North Holland, Amsterdam, 1992.  Google Scholar

[7]

Dynamics Reported, 1 (1988), 57-89.  Google Scholar

[8]

J. Differential Equations, 81 (1989), 106-135. doi: 10.1016/0022-0396(89)90180-0.  Google Scholar

[9]

McGraw-Hill, New York, 1955.  Google Scholar

[10]

J. Differential Equations, 245 (2008), 692-721. doi: 10.1016/j.jde.2008.01.018.  Google Scholar

[11]

Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.  Google Scholar

[12]

Arch. Rational Mech. Anal., 107 (1989), 325-345. doi: 10.1007/BF00251553.  Google Scholar

[13]

Tatra Mt. Math. Publ., 4 (1994), 67-92.  Google Scholar

[14]

Doc. Math. J. DMV, 1 (1996), 215-228.  Google Scholar

[15]

J. Differential Equations, 125 (1996), 239-281. doi: 10.1006/jdeq.1996.0031.  Google Scholar

[16]

J. Differential Equations, 156 (1999), 282-308. doi: 10.1006/jdeq.1998.3532.  Google Scholar

[17]

Trans. Amer. Math. Soc., 352 (2000), 257-284. doi: 10.1090/S0002-9947-99-02209-6.  Google Scholar

[18]

J. Differential Equations, 245 (2008), 692-721. doi: 10.1016/j.jde.2007.09.015.  Google Scholar

[19]

J. Reine Angew. Math., 635 (2009), 71-96. doi: 10.1515/CRELLE.2009.076.  Google Scholar

[20]

J. Dynam. Differential Equations, 22 (2010), 509-532. doi: 10.1007/s10884-009-9149-2.  Google Scholar

[21]

in "Differential Equations and Dynamical Systems" (Lisbon, 2000), 151-163, (eds. A. Galves, J. K. Hale, C. Rocha), Fields Inst. Commun., 31, Amer. Math. Soc., Providence, RI, (2002).  Google Scholar

[22]

in "Trends in Nonlinear Analysis, Festschrift Dedicated to Willi Jäger for His 60th Birthday, 23-152" (eds. M. Kirkilionis, R. Rannacher and F. Tomi), Springer-Verlag, Heidelberg, (2002).  Google Scholar

[23]

J. Differential Equations, 201 (2004), 99-138. doi: 10.1016/j.jde.2003.10.027.  Google Scholar

[24]

J. Differential Equations, 252 (2012), 588-623. doi: 10.1016/j.jde.2011.08.013.  Google Scholar

[25]

J. Differential Equations, 91 (1991), 75-94. doi: 10.1016/0022-0396(91)90134-U.  Google Scholar

[26]

Math. Surv., 25. AMS Publications, Providence, 1988.  Google Scholar

[27]

Second edition, Applied Mathematical Sciences, 47. Springer-Verlag, New York, 2002.  Google Scholar

[28]

Z. Angew. Math. Phys., 43 (1992), 63-124. doi: 10.1007/BF00944741.  Google Scholar

[29]

Discrete and Contin. Dyn. Syst., 12 (2005), 531-554.  Google Scholar

[30]

Birkhäuser, Boston, 1982. (first edition Wiley, New York, 1964)  Google Scholar

[31]

Lect. Notes in Math, 840. Springer-Verlag, New York, 1981.  Google Scholar

[32]

J. Differential Equations, 59 (1985), 165-205. doi: 10.1016/0022-0396(85)90153-6.  Google Scholar

[33]

Trans. Amer. Math. Soc., 362 (2010), 5189-5211. doi: 10.1090/S0002-9947-2010-04890-1.  Google Scholar

[34]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1397-1440. doi: 10.1016/j.anihpc.2010.09.001.  Google Scholar

[35]

J. Dynam. Differential Equations, 13 (2001), 1-57. doi: 10.1023/A:1009091930589.  Google Scholar

[36]

Stud. Math. Lib., 23, American Mathematical Society, 2003.  Google Scholar

[37]

Selecta Math. Soviet., 11 (1992), 117-144.  Google Scholar

[38]

J. Math. Kyoto Univ., 18 (1878), 221-227.  Google Scholar

[39]

J. Fac. Sci. Univ. Tokyo Sect. IA Math, 29 (1982), 401-441.  Google Scholar

[40]

in "Nonlinear Diffusion Equations and their Equilibrium States II, 139-162" (eds. W.-M. Ni, L. A. Peletier, J. Serrin). Springer-Verlag, New York, (1988). doi: 10.1007/978-1-4613-9608-6_8.  Google Scholar

[41]

Discrete Contin. Dyn. Syst., 3 (1997), 1-24.  Google Scholar

[42]

in "Dynamical Systems (Montecatini Terme, 1994), 119-207" (eds. L. Arnold, K. Mischaikow and G. Raugel), Lecture Notes in Math., 1609, Springer, Berlin, (1995). doi: 10.1007/BFb0095240.  Google Scholar

[43]

Documenta Math., 9 (2004), 435-469.  Google Scholar

[44]

Asian J. Math., 2 (1998), 135-140.  Google Scholar

[45]

Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[46]

Preprint, (2010). doi: 10.1007/s12346-011-0063-8.  Google Scholar

[47]

in "Handbook of Dynamical Systems 2, 885-982" (ed. B. Fiedler), North-Holland, Amsterdam, (2002). doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[48]

J. Dynam. Differential Equations, 3 (1991), 575-591. doi: 10.1007/BF01049100.  Google Scholar

[49]

Resenhas IME-USP, 1 (1994), 403-419.  Google Scholar

[50]

J. Dynam. Differential Equations, 19 (2007), 571-591. doi: 10.1007/s10884-007-9081-2.  Google Scholar

[51]

Ergodic Theory Dynam. Systems, 12 (1992), 559-571. doi: 10.1017/S0143385700006933.  Google Scholar

[52]

Lect. Notes in Math, 1458, Springer-Verlag, New York, 1990.  Google Scholar

[53]

Springer-Verlag, New York, 1983.  Google Scholar

[54]

J. Math. Pure Appl., 1 (1836), 373-444. Google Scholar

[55]

Funkcial. Ekvac., 6 (1964), 63-88.  Google Scholar

[56]

J. Dynam. Differential Equations, 14 (2002), 207-241. doi: 10.1023/A:1012967428328.  Google Scholar

[57]

J. Differential Equations, 183 (2002), 56-78. doi: 10.1006/jdeq.2001.4114.  Google Scholar

[58]

Proc. Amer. Math. Soc., 22 (1969), 509-512.  Google Scholar

[59]

Differential Equations, 4 (1968), 34-45.  Google Scholar

show all references

References:
[1]

Benjamin, New York, 1967.  Google Scholar

[2]

J. Differential Equations, 62 (1986), 427-442. doi: 10.1016/0022-0396(86)90093-8.  Google Scholar

[3]

J. Reine Angew. Math., 390 (1988), 79-96. doi: 10.1515/crll.1988.390.79.  Google Scholar

[4]

Trans. Amer. Math. Soc., 307 (1988), 545-568. doi: 10.2307/2001188.  Google Scholar

[5]

Siberian Math. J., 29 (1988)(1989), 717-726. doi: 10.1007/BF00970265.  Google Scholar

[6]

North Holland, Amsterdam, 1992.  Google Scholar

[7]

Dynamics Reported, 1 (1988), 57-89.  Google Scholar

[8]

J. Differential Equations, 81 (1989), 106-135. doi: 10.1016/0022-0396(89)90180-0.  Google Scholar

[9]

McGraw-Hill, New York, 1955.  Google Scholar

[10]

J. Differential Equations, 245 (2008), 692-721. doi: 10.1016/j.jde.2008.01.018.  Google Scholar

[11]

Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.  Google Scholar

[12]

Arch. Rational Mech. Anal., 107 (1989), 325-345. doi: 10.1007/BF00251553.  Google Scholar

[13]

Tatra Mt. Math. Publ., 4 (1994), 67-92.  Google Scholar

[14]

Doc. Math. J. DMV, 1 (1996), 215-228.  Google Scholar

[15]

J. Differential Equations, 125 (1996), 239-281. doi: 10.1006/jdeq.1996.0031.  Google Scholar

[16]

J. Differential Equations, 156 (1999), 282-308. doi: 10.1006/jdeq.1998.3532.  Google Scholar

[17]

Trans. Amer. Math. Soc., 352 (2000), 257-284. doi: 10.1090/S0002-9947-99-02209-6.  Google Scholar

[18]

J. Differential Equations, 245 (2008), 692-721. doi: 10.1016/j.jde.2007.09.015.  Google Scholar

[19]

J. Reine Angew. Math., 635 (2009), 71-96. doi: 10.1515/CRELLE.2009.076.  Google Scholar

[20]

J. Dynam. Differential Equations, 22 (2010), 509-532. doi: 10.1007/s10884-009-9149-2.  Google Scholar

[21]

in "Differential Equations and Dynamical Systems" (Lisbon, 2000), 151-163, (eds. A. Galves, J. K. Hale, C. Rocha), Fields Inst. Commun., 31, Amer. Math. Soc., Providence, RI, (2002).  Google Scholar

[22]

in "Trends in Nonlinear Analysis, Festschrift Dedicated to Willi Jäger for His 60th Birthday, 23-152" (eds. M. Kirkilionis, R. Rannacher and F. Tomi), Springer-Verlag, Heidelberg, (2002).  Google Scholar

[23]

J. Differential Equations, 201 (2004), 99-138. doi: 10.1016/j.jde.2003.10.027.  Google Scholar

[24]

J. Differential Equations, 252 (2012), 588-623. doi: 10.1016/j.jde.2011.08.013.  Google Scholar

[25]

J. Differential Equations, 91 (1991), 75-94. doi: 10.1016/0022-0396(91)90134-U.  Google Scholar

[26]

Math. Surv., 25. AMS Publications, Providence, 1988.  Google Scholar

[27]

Second edition, Applied Mathematical Sciences, 47. Springer-Verlag, New York, 2002.  Google Scholar

[28]

Z. Angew. Math. Phys., 43 (1992), 63-124. doi: 10.1007/BF00944741.  Google Scholar

[29]

Discrete and Contin. Dyn. Syst., 12 (2005), 531-554.  Google Scholar

[30]

Birkhäuser, Boston, 1982. (first edition Wiley, New York, 1964)  Google Scholar

[31]

Lect. Notes in Math, 840. Springer-Verlag, New York, 1981.  Google Scholar

[32]

J. Differential Equations, 59 (1985), 165-205. doi: 10.1016/0022-0396(85)90153-6.  Google Scholar

[33]

Trans. Amer. Math. Soc., 362 (2010), 5189-5211. doi: 10.1090/S0002-9947-2010-04890-1.  Google Scholar

[34]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1397-1440. doi: 10.1016/j.anihpc.2010.09.001.  Google Scholar

[35]

J. Dynam. Differential Equations, 13 (2001), 1-57. doi: 10.1023/A:1009091930589.  Google Scholar

[36]

Stud. Math. Lib., 23, American Mathematical Society, 2003.  Google Scholar

[37]

Selecta Math. Soviet., 11 (1992), 117-144.  Google Scholar

[38]

J. Math. Kyoto Univ., 18 (1878), 221-227.  Google Scholar

[39]

J. Fac. Sci. Univ. Tokyo Sect. IA Math, 29 (1982), 401-441.  Google Scholar

[40]

in "Nonlinear Diffusion Equations and their Equilibrium States II, 139-162" (eds. W.-M. Ni, L. A. Peletier, J. Serrin). Springer-Verlag, New York, (1988). doi: 10.1007/978-1-4613-9608-6_8.  Google Scholar

[41]

Discrete Contin. Dyn. Syst., 3 (1997), 1-24.  Google Scholar

[42]

in "Dynamical Systems (Montecatini Terme, 1994), 119-207" (eds. L. Arnold, K. Mischaikow and G. Raugel), Lecture Notes in Math., 1609, Springer, Berlin, (1995). doi: 10.1007/BFb0095240.  Google Scholar

[43]

Documenta Math., 9 (2004), 435-469.  Google Scholar

[44]

Asian J. Math., 2 (1998), 135-140.  Google Scholar

[45]

Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[46]

Preprint, (2010). doi: 10.1007/s12346-011-0063-8.  Google Scholar

[47]

in "Handbook of Dynamical Systems 2, 885-982" (ed. B. Fiedler), North-Holland, Amsterdam, (2002). doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[48]

J. Dynam. Differential Equations, 3 (1991), 575-591. doi: 10.1007/BF01049100.  Google Scholar

[49]

Resenhas IME-USP, 1 (1994), 403-419.  Google Scholar

[50]

J. Dynam. Differential Equations, 19 (2007), 571-591. doi: 10.1007/s10884-007-9081-2.  Google Scholar

[51]

Ergodic Theory Dynam. Systems, 12 (1992), 559-571. doi: 10.1017/S0143385700006933.  Google Scholar

[52]

Lect. Notes in Math, 1458, Springer-Verlag, New York, 1990.  Google Scholar

[53]

Springer-Verlag, New York, 1983.  Google Scholar

[54]

J. Math. Pure Appl., 1 (1836), 373-444. Google Scholar

[55]

Funkcial. Ekvac., 6 (1964), 63-88.  Google Scholar

[56]

J. Dynam. Differential Equations, 14 (2002), 207-241. doi: 10.1023/A:1012967428328.  Google Scholar

[57]

J. Differential Equations, 183 (2002), 56-78. doi: 10.1006/jdeq.2001.4114.  Google Scholar

[58]

Proc. Amer. Math. Soc., 22 (1969), 509-512.  Google Scholar

[59]

Differential Equations, 4 (1968), 34-45.  Google Scholar

[1]

Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258

[2]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[3]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[4]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[5]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[6]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[7]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[8]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[9]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[10]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[11]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[12]

Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271

[13]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[14]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[15]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[16]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[17]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3615-3627. doi: 10.3934/dcds.2021009

[18]

Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021049

[19]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[20]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]