December  2012, 7(4): 661-671. doi: 10.3934/nhm.2012.7.661

Grow up and slow decay in the critical Sobolev case

1. 

Department of Applied Mathematics and Statistics, Comenius University, 84248 Bratislava, Slovak Republic

2. 

Division of Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, United Kingdom

Received  January 2012 Revised  May 2012 Published  December 2012

We present conjectures on asymptotic behaviour of threshold solutions of the Cauchy problem for a semilinear heat equation with Sobolev critical nonlinearity. The conjectures say that, depending on the decay rate of initial data and the space dimension, the threshold solutions may grow up, stabilize, or decay to zero as $t→∞$. The rates of grow up or decay are computed formally using matched asymptotics.
Citation: Marek Fila, John R. King. Grow up and slow decay in the critical Sobolev case. Networks and Heterogeneous Media, 2012, 7 (4) : 661-671. doi: 10.3934/nhm.2012.7.661
References:
[1]

M. Fila, J. R. King, M. Winkler and E. Yanagida, Optimal lower bound of the grow-up rate for a supercritical parabolic equation, J. Differ. Equations, 228 (2006), 339-356. doi: 10.1016/j.jde.2006.01.019.

[2]

M. Fila, J. R. King, M. Winkler and E. Yanagida, Grow-up rate of solutions of a semilinear parabolic equation with a critical exponent, Adv. Differ. Equations, 12 (2007), 1-26.

[3]

M. Fila, J. R. King, M. Winkler and E. Yanagida, Very slow grow-up of solutions of a semi-linear parabolic equation, Proc. Edinb. Math. Soc., 53 (2011), 1-20. doi: 10.1017/S0013091509001497.

[4]

M. Fila, H. Matano and P. Poláčik, Immediate regularization after blow-up, SIAM J. Math. Anal., 37 (2005), 752-776. doi: 10.1137/040613299.

[5]

M. Fila and M. Winkler, Rate of convergence to a singular steady state of a supercritical parabolic equation, J. Evol. Equations, 8 (2008), 673-692. doi: 10.1007/s00028-008-0400-9.

[6]

M. Fila, M. Winkler and E. Yanagida, Grow-up rate of solutions for a supercritical semilinear diffusion equation, J. Differ. Equations, 205 (2004), 365-389. doi: 10.1016/j.jde.2004.03.009.

[7]

M. Fila, M. Winkler and E. Yanagida, Convergence rate for a parabolic equation with supercritical nonlinearity, J. Dynam. Differ. Equations, 17 (2005), 249-269. doi: 10.1007/s10884-005-5405-2.

[8]

M. Fila, M. Winkler and E. Yanagida, Slow convergence to zero for a parabolic equation with supercritical nonlinearity, Math. Annalen, 340 (2008), 477-496. doi: 10.1007/s00208-007-0148-5.

[9]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha} $, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.

[10]

V. A. Galaktionov and J. R. King, Composite structure of global unbounded solutions of nonlinear heat equations with critical Sobolev exponents, J. Differ. Equations, 189 (2003), 199-233. doi: 10.1016/S0022-0396(02)00151-1.

[11]

V. Galaktionov and J. L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Applied Math., 50 (1997), 1-67. doi: 10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.3.CO;2-R.

[12]

C. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $\mathbb{R}^{N}$, Comm. Pure Appl. Math., 45 (1992), 1153-1181. doi: 10.1002/cpa.3160450906.

[13]

C. Gui, W.-M. Ni and X. Wang, Further study on a nonlinear heat equation, J. Differ. Equations, 169 (2001), 588-613. doi: 10.1006/jdeq.2000.3909.

[14]

M. Hoshino and E. Yanagida, Sharp estimates of the convergence rate for a semilinear parabolic equation with supercritical nonlinearity, Nonlin. Anal. TMA, 69 (2008), 3136-3152. doi: 10.1016/j.na.2007.09.007.

[15]

R. Ikehata, M. Ishiwata and T. Suzuki, Semilinear parabolic equation in $R^N$ associated with critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 69 (2010), 877-900. doi: 10.1016/j.anihpc.2010.01.002.

[16]

M. Ishiwata, On the asymptotic behavior of unbounded radial solutions for semilinear parabolic problems involving critical Sobolev exponent, J. Differ. Equations, 249 (2010), 1466-1482. doi: 10.1016/j.jde.2010.06.024.

[17]

O. Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 423-452.

[18]

T. Kawanago, Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 1-15.

[19]

H. Matano and F. Merle, Classification of type I and type II behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 256 (2009), 992-1064. doi: 10.1016/j.jfa.2008.05.021.

[20]

H. Matano and F. Merle, Threshold and generic type I behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 261 (2011), 716-748. doi: 10.1016/j.jfa.2011.02.025.

[21]

N. Mizoguchi, On the behavior of solutions for a semilinear parabolic equation with supercritical nonlinearity, Math. Z., 239 (2002), 215-219. doi: 10.1007/s002090100292.

[22]

N. Mizoguchi, Boundedness of global solutions for a supercritical semilinear heat equation and its applications, Indiana Univ. Math. J., 54 (2005), 1047-1059. doi: 10.1512/iumj.2005.54.2694.

[23]

W.-M. Ni, P. E. Sacks and J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differ. Equations, 54 (1984), 97-120. doi: 10.1016/0022-0396(84)90145-1.

[24]

P. Poláčik and P. Quittner, Asymptotic behavior of threshold and sub-threshold solutions of a semilinear heat equation, Asymptotic Analysis, 57 (2008), 125-141.

[25]

P. Poláčik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Annalen, 327 (2003), 745-771. doi: 10.1007/s00208-003-0469-y.

[26]

P. Poláčik and E. Yanagida, Nonstabilizing solutions and grow-up set for a supercritical semilinear diffusion equation, Diff. Int. Equations, 17 (2004), 535-548.

[27]

P. Quittner, The decay of global solutions of a semilinear heat equation, Discrete Contin. Dynam. Systems A, 21 (2008), 307-318. doi: 10.3934/dcds.2008.21.307.

[28]

P. Quittner and P. Souplet, "Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States," Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007.

[29]

Ph. Souplet, Sur l'asymptotique des solutions globales pour une équation de la chaleur semi-linéaire dans des domaines non bornés, C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), 877-882.

[30]

C. Stinner, Very slow convergence to zero for a supercritical semilinear parabolic equation, Adv. Differ. Equations, 14 (2009), 1085-1106.

[31]

C. Stinner, Very slow convergence rates in a semilinear parabolic equation, NoDEA, 17 (2010), 213-227. doi: 10.1007/s00030-009-0050-9.

[32]

C. Stinner, The convergence rate for a semilinear parabolic equation with a critical exponent, Appl. Math. Letters, 24 (2011), 454-459. doi: 10.1016/j.aml.2010.10.041.

[33]

X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-589. doi: 10.2307/2154232.

show all references

References:
[1]

M. Fila, J. R. King, M. Winkler and E. Yanagida, Optimal lower bound of the grow-up rate for a supercritical parabolic equation, J. Differ. Equations, 228 (2006), 339-356. doi: 10.1016/j.jde.2006.01.019.

[2]

M. Fila, J. R. King, M. Winkler and E. Yanagida, Grow-up rate of solutions of a semilinear parabolic equation with a critical exponent, Adv. Differ. Equations, 12 (2007), 1-26.

[3]

M. Fila, J. R. King, M. Winkler and E. Yanagida, Very slow grow-up of solutions of a semi-linear parabolic equation, Proc. Edinb. Math. Soc., 53 (2011), 1-20. doi: 10.1017/S0013091509001497.

[4]

M. Fila, H. Matano and P. Poláčik, Immediate regularization after blow-up, SIAM J. Math. Anal., 37 (2005), 752-776. doi: 10.1137/040613299.

[5]

M. Fila and M. Winkler, Rate of convergence to a singular steady state of a supercritical parabolic equation, J. Evol. Equations, 8 (2008), 673-692. doi: 10.1007/s00028-008-0400-9.

[6]

M. Fila, M. Winkler and E. Yanagida, Grow-up rate of solutions for a supercritical semilinear diffusion equation, J. Differ. Equations, 205 (2004), 365-389. doi: 10.1016/j.jde.2004.03.009.

[7]

M. Fila, M. Winkler and E. Yanagida, Convergence rate for a parabolic equation with supercritical nonlinearity, J. Dynam. Differ. Equations, 17 (2005), 249-269. doi: 10.1007/s10884-005-5405-2.

[8]

M. Fila, M. Winkler and E. Yanagida, Slow convergence to zero for a parabolic equation with supercritical nonlinearity, Math. Annalen, 340 (2008), 477-496. doi: 10.1007/s00208-007-0148-5.

[9]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha} $, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.

[10]

V. A. Galaktionov and J. R. King, Composite structure of global unbounded solutions of nonlinear heat equations with critical Sobolev exponents, J. Differ. Equations, 189 (2003), 199-233. doi: 10.1016/S0022-0396(02)00151-1.

[11]

V. Galaktionov and J. L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Applied Math., 50 (1997), 1-67. doi: 10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.3.CO;2-R.

[12]

C. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $\mathbb{R}^{N}$, Comm. Pure Appl. Math., 45 (1992), 1153-1181. doi: 10.1002/cpa.3160450906.

[13]

C. Gui, W.-M. Ni and X. Wang, Further study on a nonlinear heat equation, J. Differ. Equations, 169 (2001), 588-613. doi: 10.1006/jdeq.2000.3909.

[14]

M. Hoshino and E. Yanagida, Sharp estimates of the convergence rate for a semilinear parabolic equation with supercritical nonlinearity, Nonlin. Anal. TMA, 69 (2008), 3136-3152. doi: 10.1016/j.na.2007.09.007.

[15]

R. Ikehata, M. Ishiwata and T. Suzuki, Semilinear parabolic equation in $R^N$ associated with critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 69 (2010), 877-900. doi: 10.1016/j.anihpc.2010.01.002.

[16]

M. Ishiwata, On the asymptotic behavior of unbounded radial solutions for semilinear parabolic problems involving critical Sobolev exponent, J. Differ. Equations, 249 (2010), 1466-1482. doi: 10.1016/j.jde.2010.06.024.

[17]

O. Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 423-452.

[18]

T. Kawanago, Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 1-15.

[19]

H. Matano and F. Merle, Classification of type I and type II behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 256 (2009), 992-1064. doi: 10.1016/j.jfa.2008.05.021.

[20]

H. Matano and F. Merle, Threshold and generic type I behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 261 (2011), 716-748. doi: 10.1016/j.jfa.2011.02.025.

[21]

N. Mizoguchi, On the behavior of solutions for a semilinear parabolic equation with supercritical nonlinearity, Math. Z., 239 (2002), 215-219. doi: 10.1007/s002090100292.

[22]

N. Mizoguchi, Boundedness of global solutions for a supercritical semilinear heat equation and its applications, Indiana Univ. Math. J., 54 (2005), 1047-1059. doi: 10.1512/iumj.2005.54.2694.

[23]

W.-M. Ni, P. E. Sacks and J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differ. Equations, 54 (1984), 97-120. doi: 10.1016/0022-0396(84)90145-1.

[24]

P. Poláčik and P. Quittner, Asymptotic behavior of threshold and sub-threshold solutions of a semilinear heat equation, Asymptotic Analysis, 57 (2008), 125-141.

[25]

P. Poláčik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Annalen, 327 (2003), 745-771. doi: 10.1007/s00208-003-0469-y.

[26]

P. Poláčik and E. Yanagida, Nonstabilizing solutions and grow-up set for a supercritical semilinear diffusion equation, Diff. Int. Equations, 17 (2004), 535-548.

[27]

P. Quittner, The decay of global solutions of a semilinear heat equation, Discrete Contin. Dynam. Systems A, 21 (2008), 307-318. doi: 10.3934/dcds.2008.21.307.

[28]

P. Quittner and P. Souplet, "Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States," Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007.

[29]

Ph. Souplet, Sur l'asymptotique des solutions globales pour une équation de la chaleur semi-linéaire dans des domaines non bornés, C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), 877-882.

[30]

C. Stinner, Very slow convergence to zero for a supercritical semilinear parabolic equation, Adv. Differ. Equations, 14 (2009), 1085-1106.

[31]

C. Stinner, Very slow convergence rates in a semilinear parabolic equation, NoDEA, 17 (2010), 213-227. doi: 10.1007/s00030-009-0050-9.

[32]

C. Stinner, The convergence rate for a semilinear parabolic equation with a critical exponent, Appl. Math. Letters, 24 (2011), 454-459. doi: 10.1016/j.aml.2010.10.041.

[33]

X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-589. doi: 10.2307/2154232.

[1]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[2]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

[3]

Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907

[4]

M. Ben Ayed, Abdelbaki Selmi. Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1705-1722. doi: 10.3934/cpaa.2010.9.1705

[5]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[6]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[7]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[8]

Tomás Caraballo, I. D. Chueshov, Pedro Marín-Rubio, José Real. Existence and asymptotic behaviour for stochastic heat equations with multiplicative noise in materials with memory. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 253-270. doi: 10.3934/dcds.2007.18.253

[9]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[10]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[11]

Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 307-318. doi: 10.3934/dcds.2008.21.307

[12]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[13]

Susana Merchán, Luigi Montoro, I. Peral. Optimal reaction exponent for some qualitative properties of solutions to the $p$-heat equation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 245-268. doi: 10.3934/cpaa.2015.14.245

[14]

Kazuhiro Ishige, Tatsuki Kawakami. Asymptotic behavior of solutions for some semilinear heat equations in $R^N$. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1351-1371. doi: 10.3934/cpaa.2009.8.1351

[15]

Weiwei Ao, Chao Liu. Asymptotic behavior of sign-changing radial solutions of a semilinear elliptic equation in $ \mathbb{R}^2 $ when exponent approaches $ +\infty $. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 5047-5077. doi: 10.3934/dcds.2020211

[16]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[17]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[18]

Nikos I. Kavallaris, Andrew A. Lacey, Christos V. Nikolopoulos, Dimitrios E. Tzanetis. On the quenching behaviour of a semilinear wave equation modelling MEMS technology. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1009-1037. doi: 10.3934/dcds.2015.35.1009

[19]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[20]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure and Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (146)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]