-
Previous Article
Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary
- NHM Home
- This Issue
-
Next Article
PDE problems arising in mathematical biology
A link between microscopic and macroscopic models of self-organized aggregation
1. | Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan |
2. | Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 1-1-1 Higashimita, Tamaku, Kawasaki, Kanagawa 214-8571, Japan, Japan |
3. | FIRST, Aihara Innovative Mathematical Modelling Project, Japan Science and Technology Agency, Collaborative Research Center for Innovative Mathematical Modelling, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan |
References:
[1] |
M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame, Conservative cross diffusions and pattern formation through relaxation,, J. Math. Pures Appl., 92 (2009), 651.
doi: 10.1016/j.matpur.2009.05.003. |
[2] |
S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau, "Self-Organization in Biological Systems,", Princeton University Press, (2003).
|
[3] |
A. De Masi, S. Luckhaus and E. Presutti, Two scales hydrodynamic limit for a model of malignant tumor cells,, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 257.
doi: 10.1016/j.anihpb.2006.03.003. |
[4] |
E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman, B. Sandstede and X. Wang, AUTO2000: Continuation and bifurcation software for ordinary differential equations (with HomCont), ., (). Google Scholar |
[5] |
S.-I. Ei, H. Izuhara and M. Mimura, Infinite dimensional relaxation oscillation in aggregation-growth systems,, Discrete and Continuous Dynamical Systems, 17 (2012), 1859.
doi: 10.3934/dcdsb.2012.17.1859. |
[6] |
L. C. Evans, "Partial Differential Equations,", American Mathematical Society, (1998).
|
[7] |
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.
doi: 10.1007/s00285-008-0201-3. |
[8] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I,, Jahresber Deutsch Math., 105 (2003), 103.
|
[9] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II,, Jahresber Deutsch Math., 106 (2004), 51.
|
[10] |
M. Iida, M. Mimura and H. Ninomiya, Diffusion, Cross-diffusion and Competitive interaction,, J. Math. Biol., 53 (2006), 617.
doi: 10.1007/s00285-006-0013-2. |
[11] |
S. Ishii, An aggregation pheromone of the German cockroach, Blattella germanica (L.),, Appl. Ent. Zool., 5 (1970), 33. Google Scholar |
[12] |
S. Ishii and Y. Kuwahara, An aggregation pheromone of the German cockroach Blattella germanica L. (Orthoptera: Blattelidae),, Appl. Ent. Zool., 2 (1967), 203. Google Scholar |
[13] |
S. Ishii and Y. Kuwahara, Aggregation of German Cockroach (Blattella germanica) Nymphs,, Experientia, 24 (1968), 88. Google Scholar |
[14] |
R. Jeanson, C. Rivault, J. -L. Deneubourg, S. Blanco, R. Fournier, C. Jost and G. Theraulaz, Self-organized aggregation in cockroaches,, Animal Behavior, 69 (2005), 169. Google Scholar |
[15] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol. 26 (1970), 26 (1970), 399. Google Scholar |
[16] |
C. Kipnis and C. Landim, "Scaling Limits of Interacting Particle Systems,", Springer, (1999).
|
[17] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Transl. Math. Monographs, 23 (1967).
|
[18] |
M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.
doi: 10.1007/BF00276035. |
[19] |
M. Mimura and M. Nagayama, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability,, Chaos, 7 (1997), 817.
doi: 10.1063/1.166282. |
[20] |
D. Morale, V. Capasso and K. Oelschläger, An interacting particle system modeling aggregation behavior: from individuals to populations,, J. Math. Biol., 50 (2005), 49.
doi: 10.1007/s00285-004-0279-1. |
[21] |
H. Murakawa, A relation between cross-diffusion and reaction-diffusion,, Discrete and Continuous Dynamical Systems, 5 (2011), 147.
doi: 10.3934/dcdss.2012.5.147. |
[22] |
A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives,", Springer-Verlag, (2001).
|
[23] |
H. G. Othmer and A. Stevens, Aggregation, blow up and collapse: The ABC's of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044.
doi: 10.1137/S0036139995288976. |
[24] |
J. E. Pearson, Complex patterns in a simple system,, Science, 261 (1993), 189. Google Scholar |
[25] |
R. Schaaf, Stationary solutions of chemotaxis systems,, Trans. AMS, 292 (1985), 531.
doi: 10.2307/2000228. |
[26] |
A. Stevens, A stochastic cellular automaton modeling gliding and aggregation of myxobacteria,, SIAM J. Appl. Math., 61 (2000), 172.
doi: 10.1137/S0036139998342053. |
[27] |
A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems,, SIAM J. Appl. Math., 61 (2000), 183.
doi: 10.1137/S0036139998342065. |
[28] |
N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83.
doi: 10.1016/0022-5193(79)90258-3. |
[29] |
R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).
|
show all references
References:
[1] |
M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame, Conservative cross diffusions and pattern formation through relaxation,, J. Math. Pures Appl., 92 (2009), 651.
doi: 10.1016/j.matpur.2009.05.003. |
[2] |
S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau, "Self-Organization in Biological Systems,", Princeton University Press, (2003).
|
[3] |
A. De Masi, S. Luckhaus and E. Presutti, Two scales hydrodynamic limit for a model of malignant tumor cells,, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 257.
doi: 10.1016/j.anihpb.2006.03.003. |
[4] |
E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman, B. Sandstede and X. Wang, AUTO2000: Continuation and bifurcation software for ordinary differential equations (with HomCont), ., (). Google Scholar |
[5] |
S.-I. Ei, H. Izuhara and M. Mimura, Infinite dimensional relaxation oscillation in aggregation-growth systems,, Discrete and Continuous Dynamical Systems, 17 (2012), 1859.
doi: 10.3934/dcdsb.2012.17.1859. |
[6] |
L. C. Evans, "Partial Differential Equations,", American Mathematical Society, (1998).
|
[7] |
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.
doi: 10.1007/s00285-008-0201-3. |
[8] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I,, Jahresber Deutsch Math., 105 (2003), 103.
|
[9] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II,, Jahresber Deutsch Math., 106 (2004), 51.
|
[10] |
M. Iida, M. Mimura and H. Ninomiya, Diffusion, Cross-diffusion and Competitive interaction,, J. Math. Biol., 53 (2006), 617.
doi: 10.1007/s00285-006-0013-2. |
[11] |
S. Ishii, An aggregation pheromone of the German cockroach, Blattella germanica (L.),, Appl. Ent. Zool., 5 (1970), 33. Google Scholar |
[12] |
S. Ishii and Y. Kuwahara, An aggregation pheromone of the German cockroach Blattella germanica L. (Orthoptera: Blattelidae),, Appl. Ent. Zool., 2 (1967), 203. Google Scholar |
[13] |
S. Ishii and Y. Kuwahara, Aggregation of German Cockroach (Blattella germanica) Nymphs,, Experientia, 24 (1968), 88. Google Scholar |
[14] |
R. Jeanson, C. Rivault, J. -L. Deneubourg, S. Blanco, R. Fournier, C. Jost and G. Theraulaz, Self-organized aggregation in cockroaches,, Animal Behavior, 69 (2005), 169. Google Scholar |
[15] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol. 26 (1970), 26 (1970), 399. Google Scholar |
[16] |
C. Kipnis and C. Landim, "Scaling Limits of Interacting Particle Systems,", Springer, (1999).
|
[17] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Transl. Math. Monographs, 23 (1967).
|
[18] |
M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.
doi: 10.1007/BF00276035. |
[19] |
M. Mimura and M. Nagayama, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability,, Chaos, 7 (1997), 817.
doi: 10.1063/1.166282. |
[20] |
D. Morale, V. Capasso and K. Oelschläger, An interacting particle system modeling aggregation behavior: from individuals to populations,, J. Math. Biol., 50 (2005), 49.
doi: 10.1007/s00285-004-0279-1. |
[21] |
H. Murakawa, A relation between cross-diffusion and reaction-diffusion,, Discrete and Continuous Dynamical Systems, 5 (2011), 147.
doi: 10.3934/dcdss.2012.5.147. |
[22] |
A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives,", Springer-Verlag, (2001).
|
[23] |
H. G. Othmer and A. Stevens, Aggregation, blow up and collapse: The ABC's of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044.
doi: 10.1137/S0036139995288976. |
[24] |
J. E. Pearson, Complex patterns in a simple system,, Science, 261 (1993), 189. Google Scholar |
[25] |
R. Schaaf, Stationary solutions of chemotaxis systems,, Trans. AMS, 292 (1985), 531.
doi: 10.2307/2000228. |
[26] |
A. Stevens, A stochastic cellular automaton modeling gliding and aggregation of myxobacteria,, SIAM J. Appl. Math., 61 (2000), 172.
doi: 10.1137/S0036139998342053. |
[27] |
A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems,, SIAM J. Appl. Math., 61 (2000), 183.
doi: 10.1137/S0036139998342065. |
[28] |
N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83.
doi: 10.1016/0022-5193(79)90258-3. |
[29] |
R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).
|
[1] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[2] |
Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161 |
[3] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[4] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[5] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[6] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[7] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[8] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[9] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[10] |
Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031 |
[11] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[12] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[13] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[14] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[15] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[16] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[17] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[18] |
Yuanshi Wang. Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 963-985. doi: 10.3934/dcdsb.2020149 |
[19] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[20] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]