December  2012, 7(4): 705-740. doi: 10.3934/nhm.2012.7.705

A link between microscopic and macroscopic models of self-organized aggregation

1. 

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

2. 

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 1-1-1 Higashimita, Tamaku, Kawasaki, Kanagawa 214-8571, Japan, Japan

3. 

FIRST, Aihara Innovative Mathematical Modelling Project, Japan Science and Technology Agency, Collaborative Research Center for Innovative Mathematical Modelling, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Received  March 2012 Revised  July 2012 Published  December 2012

In some species, one of the roles of pheromones is to influence aggregation behavior. We first propose a macroscopic cross-diffusion model for the self-organized aggregation of German cockroaches that includes directed movement due to an aggregation pheromone. We then propose a microscopic particle model which is set into context with the macroscopic model. Our goal is to link the macroscopic and microscopic descriptions by using the singular and the hydrodynamic limit procedures. A hybrid model related to the macroscopic and microscopic models is also proposed as a cockroach aggregation model. This hybrid model assumes that each individual responds to pheromone concentration and moves by two-mode simple symmetric random walks. It shows that even though the movement of individuals is not directed, two-mode simple symmetric random walks and effect of the pheromone result in self-organized aggregation.
Citation: Tadahisa Funaki, Hirofumi Izuhara, Masayasu Mimura, Chiyori Urabe. A link between microscopic and macroscopic models of self-organized aggregation. Networks & Heterogeneous Media, 2012, 7 (4) : 705-740. doi: 10.3934/nhm.2012.7.705
References:
[1]

M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame, Conservative cross diffusions and pattern formation through relaxation,, J. Math. Pures Appl., 92 (2009), 651.  doi: 10.1016/j.matpur.2009.05.003.  Google Scholar

[2]

S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau, "Self-Organization in Biological Systems,", Princeton University Press, (2003).   Google Scholar

[3]

A. De Masi, S. Luckhaus and E. Presutti, Two scales hydrodynamic limit for a model of malignant tumor cells,, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 257.  doi: 10.1016/j.anihpb.2006.03.003.  Google Scholar

[4]

E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman, B. Sandstede and X. Wang, AUTO2000: Continuation and bifurcation software for ordinary differential equations (with HomCont), ., ().   Google Scholar

[5]

S.-I. Ei, H. Izuhara and M. Mimura, Infinite dimensional relaxation oscillation in aggregation-growth systems,, Discrete and Continuous Dynamical Systems, 17 (2012), 1859.  doi: 10.3934/dcdsb.2012.17.1859.  Google Scholar

[6]

L. C. Evans, "Partial Differential Equations,", American Mathematical Society, (1998).   Google Scholar

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I,, Jahresber Deutsch Math., 105 (2003), 103.   Google Scholar

[9]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II,, Jahresber Deutsch Math., 106 (2004), 51.   Google Scholar

[10]

M. Iida, M. Mimura and H. Ninomiya, Diffusion, Cross-diffusion and Competitive interaction,, J. Math. Biol., 53 (2006), 617.  doi: 10.1007/s00285-006-0013-2.  Google Scholar

[11]

S. Ishii, An aggregation pheromone of the German cockroach, Blattella germanica (L.),, Appl. Ent. Zool., 5 (1970), 33.   Google Scholar

[12]

S. Ishii and Y. Kuwahara, An aggregation pheromone of the German cockroach Blattella germanica L. (Orthoptera: Blattelidae),, Appl. Ent. Zool., 2 (1967), 203.   Google Scholar

[13]

S. Ishii and Y. Kuwahara, Aggregation of German Cockroach (Blattella germanica) Nymphs,, Experientia, 24 (1968), 88.   Google Scholar

[14]

R. Jeanson, C. Rivault, J. -L. Deneubourg, S. Blanco, R. Fournier, C. Jost and G. Theraulaz, Self-organized aggregation in cockroaches,, Animal Behavior, 69 (2005), 169.   Google Scholar

[15]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol. 26 (1970), 26 (1970), 399.   Google Scholar

[16]

C. Kipnis and C. Landim, "Scaling Limits of Interacting Particle Systems,", Springer, (1999).   Google Scholar

[17]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Transl. Math. Monographs, 23 (1967).   Google Scholar

[18]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.  doi: 10.1007/BF00276035.  Google Scholar

[19]

M. Mimura and M. Nagayama, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability,, Chaos, 7 (1997), 817.  doi: 10.1063/1.166282.  Google Scholar

[20]

D. Morale, V. Capasso and K. Oelschläger, An interacting particle system modeling aggregation behavior: from individuals to populations,, J. Math. Biol., 50 (2005), 49.  doi: 10.1007/s00285-004-0279-1.  Google Scholar

[21]

H. Murakawa, A relation between cross-diffusion and reaction-diffusion,, Discrete and Continuous Dynamical Systems, 5 (2011), 147.  doi: 10.3934/dcdss.2012.5.147.  Google Scholar

[22]

A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives,", Springer-Verlag, (2001).   Google Scholar

[23]

H. G. Othmer and A. Stevens, Aggregation, blow up and collapse: The ABC's of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044.  doi: 10.1137/S0036139995288976.  Google Scholar

[24]

J. E. Pearson, Complex patterns in a simple system,, Science, 261 (1993), 189.   Google Scholar

[25]

R. Schaaf, Stationary solutions of chemotaxis systems,, Trans. AMS, 292 (1985), 531.  doi: 10.2307/2000228.  Google Scholar

[26]

A. Stevens, A stochastic cellular automaton modeling gliding and aggregation of myxobacteria,, SIAM J. Appl. Math., 61 (2000), 172.  doi: 10.1137/S0036139998342053.  Google Scholar

[27]

A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems,, SIAM J. Appl. Math., 61 (2000), 183.  doi: 10.1137/S0036139998342065.  Google Scholar

[28]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[29]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).   Google Scholar

show all references

References:
[1]

M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame, Conservative cross diffusions and pattern formation through relaxation,, J. Math. Pures Appl., 92 (2009), 651.  doi: 10.1016/j.matpur.2009.05.003.  Google Scholar

[2]

S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau, "Self-Organization in Biological Systems,", Princeton University Press, (2003).   Google Scholar

[3]

A. De Masi, S. Luckhaus and E. Presutti, Two scales hydrodynamic limit for a model of malignant tumor cells,, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 257.  doi: 10.1016/j.anihpb.2006.03.003.  Google Scholar

[4]

E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman, B. Sandstede and X. Wang, AUTO2000: Continuation and bifurcation software for ordinary differential equations (with HomCont), ., ().   Google Scholar

[5]

S.-I. Ei, H. Izuhara and M. Mimura, Infinite dimensional relaxation oscillation in aggregation-growth systems,, Discrete and Continuous Dynamical Systems, 17 (2012), 1859.  doi: 10.3934/dcdsb.2012.17.1859.  Google Scholar

[6]

L. C. Evans, "Partial Differential Equations,", American Mathematical Society, (1998).   Google Scholar

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I,, Jahresber Deutsch Math., 105 (2003), 103.   Google Scholar

[9]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II,, Jahresber Deutsch Math., 106 (2004), 51.   Google Scholar

[10]

M. Iida, M. Mimura and H. Ninomiya, Diffusion, Cross-diffusion and Competitive interaction,, J. Math. Biol., 53 (2006), 617.  doi: 10.1007/s00285-006-0013-2.  Google Scholar

[11]

S. Ishii, An aggregation pheromone of the German cockroach, Blattella germanica (L.),, Appl. Ent. Zool., 5 (1970), 33.   Google Scholar

[12]

S. Ishii and Y. Kuwahara, An aggregation pheromone of the German cockroach Blattella germanica L. (Orthoptera: Blattelidae),, Appl. Ent. Zool., 2 (1967), 203.   Google Scholar

[13]

S. Ishii and Y. Kuwahara, Aggregation of German Cockroach (Blattella germanica) Nymphs,, Experientia, 24 (1968), 88.   Google Scholar

[14]

R. Jeanson, C. Rivault, J. -L. Deneubourg, S. Blanco, R. Fournier, C. Jost and G. Theraulaz, Self-organized aggregation in cockroaches,, Animal Behavior, 69 (2005), 169.   Google Scholar

[15]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol. 26 (1970), 26 (1970), 399.   Google Scholar

[16]

C. Kipnis and C. Landim, "Scaling Limits of Interacting Particle Systems,", Springer, (1999).   Google Scholar

[17]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Transl. Math. Monographs, 23 (1967).   Google Scholar

[18]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.  doi: 10.1007/BF00276035.  Google Scholar

[19]

M. Mimura and M. Nagayama, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability,, Chaos, 7 (1997), 817.  doi: 10.1063/1.166282.  Google Scholar

[20]

D. Morale, V. Capasso and K. Oelschläger, An interacting particle system modeling aggregation behavior: from individuals to populations,, J. Math. Biol., 50 (2005), 49.  doi: 10.1007/s00285-004-0279-1.  Google Scholar

[21]

H. Murakawa, A relation between cross-diffusion and reaction-diffusion,, Discrete and Continuous Dynamical Systems, 5 (2011), 147.  doi: 10.3934/dcdss.2012.5.147.  Google Scholar

[22]

A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives,", Springer-Verlag, (2001).   Google Scholar

[23]

H. G. Othmer and A. Stevens, Aggregation, blow up and collapse: The ABC's of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044.  doi: 10.1137/S0036139995288976.  Google Scholar

[24]

J. E. Pearson, Complex patterns in a simple system,, Science, 261 (1993), 189.   Google Scholar

[25]

R. Schaaf, Stationary solutions of chemotaxis systems,, Trans. AMS, 292 (1985), 531.  doi: 10.2307/2000228.  Google Scholar

[26]

A. Stevens, A stochastic cellular automaton modeling gliding and aggregation of myxobacteria,, SIAM J. Appl. Math., 61 (2000), 172.  doi: 10.1137/S0036139998342053.  Google Scholar

[27]

A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems,, SIAM J. Appl. Math., 61 (2000), 183.  doi: 10.1137/S0036139998342065.  Google Scholar

[28]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[29]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).   Google Scholar

[1]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[2]

Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[5]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[6]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[7]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[8]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[9]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[10]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[11]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[12]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[13]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[14]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[15]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[16]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[17]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[18]

Yuanshi Wang. Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 963-985. doi: 10.3934/dcdsb.2020149

[19]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (6)

[Back to Top]