March  2012, 7(1): 71-111. doi: 10.3934/nhm.2012.7.71

Robot's finger and expansions in non-integer bases

1. 

Sapienza Università di Roma, Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sezione Matematica, Via A. Scarpa n.16 00161 Roma, Italy

2. 

Sapienza Università di Roma, Sapienza Università di Roma, Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sezione Matematica, Via A. Scarpa n.16 00161 Roma, Italy

Received  July 2011 Revised  December 2011 Published  February 2012

We study a robot finger model in the framework of the theory of expansions in non-integer bases. We investigate the reachable set and its closure. A control policy to get approximate reachability is also proposed.
Citation: Anna Chiara Lai, Paola Loreti. Robot's finger and expansions in non-integer bases. Networks & Heterogeneous Media, 2012, 7 (1) : 71-111. doi: 10.3934/nhm.2012.7.71
References:
[1]

A. Bicchi, Robotic grasping and contact: A review,, Proc. IEEE Int. Conf. on Robotics and Automation, (2000), 348.   Google Scholar

[2]

Y. Chitour and B. Piccoli, Controllability for discrete systems with a finite control set,, Mathematics of Control Signals and Systems, 14 (2001), 173.  doi: 10.1007/PL00009881.  Google Scholar

[3]

P. Erd\Hos and V. Komornik, Developments in non-integer bases,, Acta Math. Hungar., 79 (1998), 57.  doi: 10.1023/A:1006557705401.  Google Scholar

[4]

K. J. Falconer, "Fractal Geometry,", Mathematical Foundations and Applications, (1990).   Google Scholar

[5]

W. J. Gilbert, Geometry of radix representations,, in, (1981), 129.  doi: 10.1007/978-1-4612-5648-9_7.  Google Scholar

[6]

W. J. Gilbert, The fractal dimension of sets derived from complex bases,, Canad. Math. Bull., 29 (1986), 495.  doi: 10.4153/CMB-1986-078-1.  Google Scholar

[7]

W. J. Gilbert, Complex bases and fractal similarity,, Ann. Sci. Math. Québec, 11 (1987), 65.   Google Scholar

[8]

P. S. Heckbert, ed., "Graphics Gems IV,", Academic Press, (1994).   Google Scholar

[9]

J. Easudes C. J. H. Moravec and F. Dellaert, Fractal branching ultra-dexterous robots (bush robots),, Technical report, (1996).   Google Scholar

[10]

J. Hutchinson, Fractals and self-similarity,, Indiana Univ. Math. J., 30 (1981), 713.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar

[11]

K.-H. Indlekofer, I. Kátai and P. Racskó, Number systems and fractal geometry,, in, 80 (1992), 319.   Google Scholar

[12]

A. C. Lai, "On Expansions in Non-Integer Base,", Ph.D thesis, (2010).   Google Scholar

[13]

W. Parry, On the $\beta $-expansions of real numbers,, Acta Math. Acad. Sci. Hungar., 11 (1960), 401.  doi: 10.1007/BF02020954.  Google Scholar

[14]

J. Pineda, A parallel algorithm for polygon rasterization,, Proceedings of the 15th annual conference on Computer graphics and interactive techniques, 22 (1988), 17.   Google Scholar

[15]

A. Rényi, Representations for real numbers and their ergodic properties,, Acta Math. Acad. Sci. Hungar, 8 (1957), 477.  doi: 10.1007/BF02020331.  Google Scholar

[16]

B. Siciliano and O. Khatib, "Springer Handbook of Robotics,", 2008., ().   Google Scholar

show all references

References:
[1]

A. Bicchi, Robotic grasping and contact: A review,, Proc. IEEE Int. Conf. on Robotics and Automation, (2000), 348.   Google Scholar

[2]

Y. Chitour and B. Piccoli, Controllability for discrete systems with a finite control set,, Mathematics of Control Signals and Systems, 14 (2001), 173.  doi: 10.1007/PL00009881.  Google Scholar

[3]

P. Erd\Hos and V. Komornik, Developments in non-integer bases,, Acta Math. Hungar., 79 (1998), 57.  doi: 10.1023/A:1006557705401.  Google Scholar

[4]

K. J. Falconer, "Fractal Geometry,", Mathematical Foundations and Applications, (1990).   Google Scholar

[5]

W. J. Gilbert, Geometry of radix representations,, in, (1981), 129.  doi: 10.1007/978-1-4612-5648-9_7.  Google Scholar

[6]

W. J. Gilbert, The fractal dimension of sets derived from complex bases,, Canad. Math. Bull., 29 (1986), 495.  doi: 10.4153/CMB-1986-078-1.  Google Scholar

[7]

W. J. Gilbert, Complex bases and fractal similarity,, Ann. Sci. Math. Québec, 11 (1987), 65.   Google Scholar

[8]

P. S. Heckbert, ed., "Graphics Gems IV,", Academic Press, (1994).   Google Scholar

[9]

J. Easudes C. J. H. Moravec and F. Dellaert, Fractal branching ultra-dexterous robots (bush robots),, Technical report, (1996).   Google Scholar

[10]

J. Hutchinson, Fractals and self-similarity,, Indiana Univ. Math. J., 30 (1981), 713.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar

[11]

K.-H. Indlekofer, I. Kátai and P. Racskó, Number systems and fractal geometry,, in, 80 (1992), 319.   Google Scholar

[12]

A. C. Lai, "On Expansions in Non-Integer Base,", Ph.D thesis, (2010).   Google Scholar

[13]

W. Parry, On the $\beta $-expansions of real numbers,, Acta Math. Acad. Sci. Hungar., 11 (1960), 401.  doi: 10.1007/BF02020954.  Google Scholar

[14]

J. Pineda, A parallel algorithm for polygon rasterization,, Proceedings of the 15th annual conference on Computer graphics and interactive techniques, 22 (1988), 17.   Google Scholar

[15]

A. Rényi, Representations for real numbers and their ergodic properties,, Acta Math. Acad. Sci. Hungar, 8 (1957), 477.  doi: 10.1007/BF02020331.  Google Scholar

[16]

B. Siciliano and O. Khatib, "Springer Handbook of Robotics,", 2008., ().   Google Scholar

[1]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[2]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[3]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[4]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[5]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[6]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[7]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[8]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[9]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[10]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[11]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[12]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[13]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[14]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[15]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[16]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[17]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[18]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]