-
Previous Article
Robustness of finite element simulations in densely packed random particle composites
- NHM Home
- This Issue
-
Next Article
A sufficient condition for classified networks to possess complex network features
Robot's finger and expansions in non-integer bases
1. | Sapienza Università di Roma, Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sezione Matematica, Via A. Scarpa n.16 00161 Roma, Italy |
2. | Sapienza Università di Roma, Sapienza Università di Roma, Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sezione Matematica, Via A. Scarpa n.16 00161 Roma, Italy |
References:
[1] |
A. Bicchi, Robotic grasping and contact: A review, Proc. IEEE Int. Conf. on Robotics and Automation, (2000), 348-353. |
[2] |
Y. Chitour and B. Piccoli, Controllability for discrete systems with a finite control set, Mathematics of Control Signals and Systems, 14 (2001), 173-193.
doi: 10.1007/PL00009881. |
[3] |
P. Erd\Hos and V. Komornik, Developments in non-integer bases, Acta Math. Hungar., 79 (1998), 57-83.
doi: 10.1023/A:1006557705401. |
[4] |
K. J. Falconer, "Fractal Geometry," Mathematical Foundations and Applications, John Wiley & Sons, Ltd., Chichester, 1990. |
[5] |
W. J. Gilbert, Geometry of radix representations, in "The Geometric Vein," Springer, New York-Berlin, (1981), 129-139.
doi: 10.1007/978-1-4612-5648-9_7. |
[6] |
W. J. Gilbert, The fractal dimension of sets derived from complex bases, Canad. Math. Bull., 29 (1986), 495-500.
doi: 10.4153/CMB-1986-078-1. |
[7] |
W. J. Gilbert, Complex bases and fractal similarity, Ann. Sci. Math. Québec, 11 (1987), 65-77. |
[8] |
P. S. Heckbert, ed., "Graphics Gems IV," Academic Press, 1994. |
[9] |
J. Easudes C. J. H. Moravec and F. Dellaert, Fractal branching ultra-dexterous robots (bush robots), Technical report, NASA Advanced Concepts Research Project, 1996. |
[10] |
J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.
doi: 10.1512/iumj.1981.30.30055. |
[11] |
K.-H. Indlekofer, I. Kátai and P. Racskó, Number systems and fractal geometry, in "Probability Theory and Applications," Math. Appl., 80, Kluwer Acad. Publ., Dordrecht, (1992), 319-334. |
[12] |
A. C. Lai, "On Expansions in Non-Integer Base," Ph.D thesis, Sapienza Università di Roma and Université Paris Diderot, 2010. |
[13] |
W. Parry, On the $\beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416.
doi: 10.1007/BF02020954. |
[14] |
J. Pineda, A parallel algorithm for polygon rasterization, Proceedings of the 15th annual conference on Computer graphics and interactive techniques, 22 (1988), 17-20. |
[15] |
A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar, 8 (1957), 477-493.
doi: 10.1007/BF02020331. |
[16] |
B. Siciliano and O. Khatib, "Springer Handbook of Robotics," 2008. |
show all references
References:
[1] |
A. Bicchi, Robotic grasping and contact: A review, Proc. IEEE Int. Conf. on Robotics and Automation, (2000), 348-353. |
[2] |
Y. Chitour and B. Piccoli, Controllability for discrete systems with a finite control set, Mathematics of Control Signals and Systems, 14 (2001), 173-193.
doi: 10.1007/PL00009881. |
[3] |
P. Erd\Hos and V. Komornik, Developments in non-integer bases, Acta Math. Hungar., 79 (1998), 57-83.
doi: 10.1023/A:1006557705401. |
[4] |
K. J. Falconer, "Fractal Geometry," Mathematical Foundations and Applications, John Wiley & Sons, Ltd., Chichester, 1990. |
[5] |
W. J. Gilbert, Geometry of radix representations, in "The Geometric Vein," Springer, New York-Berlin, (1981), 129-139.
doi: 10.1007/978-1-4612-5648-9_7. |
[6] |
W. J. Gilbert, The fractal dimension of sets derived from complex bases, Canad. Math. Bull., 29 (1986), 495-500.
doi: 10.4153/CMB-1986-078-1. |
[7] |
W. J. Gilbert, Complex bases and fractal similarity, Ann. Sci. Math. Québec, 11 (1987), 65-77. |
[8] |
P. S. Heckbert, ed., "Graphics Gems IV," Academic Press, 1994. |
[9] |
J. Easudes C. J. H. Moravec and F. Dellaert, Fractal branching ultra-dexterous robots (bush robots), Technical report, NASA Advanced Concepts Research Project, 1996. |
[10] |
J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.
doi: 10.1512/iumj.1981.30.30055. |
[11] |
K.-H. Indlekofer, I. Kátai and P. Racskó, Number systems and fractal geometry, in "Probability Theory and Applications," Math. Appl., 80, Kluwer Acad. Publ., Dordrecht, (1992), 319-334. |
[12] |
A. C. Lai, "On Expansions in Non-Integer Base," Ph.D thesis, Sapienza Università di Roma and Université Paris Diderot, 2010. |
[13] |
W. Parry, On the $\beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416.
doi: 10.1007/BF02020954. |
[14] |
J. Pineda, A parallel algorithm for polygon rasterization, Proceedings of the 15th annual conference on Computer graphics and interactive techniques, 22 (1988), 17-20. |
[15] |
A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar, 8 (1957), 477-493.
doi: 10.1007/BF02020331. |
[16] |
B. Siciliano and O. Khatib, "Springer Handbook of Robotics," 2008. |
[1] |
Pieter C. Allaart. An algebraic approach to entropy plateaus in non-integer base expansions. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6507-6522. doi: 10.3934/dcds.2019282 |
[2] |
Karma Dajani, Charlene Kalle. Random β-expansions with deleted digits. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 199-217. doi: 10.3934/dcds.2007.18.199 |
[3] |
Muhammad Bilal Riaz, Naseer Ahmad Asif, Abdon Atangana, Muhammad Imran Asjad. Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernel. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 645-664. doi: 10.3934/dcdss.2019041 |
[4] |
Ismara Álvarez-Barrientos, Mijail Borges-Quintana, Miguel Angel Borges-Trenard, Daniel Panario. Computing Gröbner bases associated with lattices. Advances in Mathematics of Communications, 2016, 10 (4) : 851-860. doi: 10.3934/amc.2016045 |
[5] |
Karma Dajani, Cor Kraaikamp, Pierre Liardet. Ergodic properties of signed binary expansions. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 87-119. doi: 10.3934/dcds.2006.15.87 |
[6] |
Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389 |
[7] |
Rainer Buckdahn, Ingo Bulla, Jin Ma. Pathwise Taylor expansions for Itô random fields. Mathematical Control and Related Fields, 2011, 1 (4) : 437-468. doi: 10.3934/mcrf.2011.1.437 |
[8] |
Piotr Pokora, Tomasz Szemberg. Minkowski bases on algebraic surfaces with rational polyhedral pseudo-effective cone. Electronic Research Announcements, 2014, 21: 126-131. doi: 10.3934/era.2014.21.126 |
[9] |
Seok-Jin Kang and Jae-Hoon Kwon. Quantum affine algebras, combinatorics of Young walls, and global bases. Electronic Research Announcements, 2002, 8: 35-46. |
[10] |
Sergei Avdonin, Julian Edward. Controllability for a string with attached masses and Riesz bases for asymmetric spaces. Mathematical Control and Related Fields, 2019, 9 (3) : 453-494. doi: 10.3934/mcrf.2019021 |
[11] |
Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515 |
[12] |
Barbara Kaltenbacher. Periodic solutions and multiharmonic expansions for the Westervelt equation. Evolution Equations and Control Theory, 2021, 10 (2) : 229-247. doi: 10.3934/eect.2020063 |
[13] |
Chaolang Hu, Xiaoming He, Tao Lü. Euler-Maclaurin expansions and approximations of hypersingular integrals. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1355-1375. doi: 10.3934/dcdsb.2015.20.1355 |
[14] |
Hannes Bartz, Antonia Wachter-Zeh. Efficient decoding of interleaved subspace and Gabidulin codes beyond their unique decoding radius using Gröbner bases. Advances in Mathematics of Communications, 2018, 12 (4) : 773-804. doi: 10.3934/amc.2018046 |
[15] |
Abderrazek Karoui. A note on the construction of nonseparable wavelet bases and multiwavelet matrix filters of $L^2(\R^n)$, where $n\geq 2$. Electronic Research Announcements, 2003, 9: 32-39. |
[16] |
Joyce R. McLaughlin and Arturo Portnoy. Perturbation expansions for eigenvalues and eigenvectors for a rectangular membrane subject to a restorative force. Electronic Research Announcements, 1997, 3: 72-77. |
[17] |
A. Procacci, Benedetto Scoppola. Convergent expansions for random cluster model with $q>0$ on infinite graphs. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1145-1178. doi: 10.3934/cpaa.2008.7.1145 |
[18] |
Sigurd Angenent. Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow. Networks and Heterogeneous Media, 2013, 8 (1) : 1-8. doi: 10.3934/nhm.2013.8.1 |
[19] |
Fioralba Cakoni, Shari Moskow, Scott Rome. Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast. Inverse Problems and Imaging, 2018, 12 (4) : 971-992. doi: 10.3934/ipi.2018041 |
[20] |
Nan Li, Song Wang. Pricing options on investment project expansions under commodity price uncertainty. Journal of Industrial and Management Optimization, 2019, 15 (1) : 261-273. doi: 10.3934/jimo.2018042 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]