December  2012, 7(4): 767-780. doi: 10.3934/nhm.2012.7.767

Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source

1. 

Department of Mathematics, The University of Akron, Akron, OH 44325, United States

2. 

Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, United States

Received  January 2012 Revised  August 2012 Published  December 2012

This paper deals with the long-time behavior of solutions of nonlinear reaction-diffusion equations describing formation of morphogen gradients, the concentration fields of molecules acting as spatial regulators of cell differentiation in developing tissues. For the considered class of models, we establish existence of a new type of ultra-singular self-similar solutions. These solutions arise as limits of the solutions of the initial value problem with zero initial data and infinitely strong source at the boundary. We prove existence and uniqueness of such solutions in the suitable weighted energy spaces. Moreover, we prove that the obtained self-similar solutions are the long-time limits of the solutions of the initial value problem with zero initial data and a time-independent boundary source.
Citation: Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks & Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767
References:
[1]

G. I. Barenblatt, "Scaling, Self-Similarity, and Intermediate Asymptotics,", Cambridge University Press, (1996). Google Scholar

[2]

H. Brézis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions,, J. Math. Pures Appl., 62 (1983), 73. Google Scholar

[3]

H. Brezis, L. A. Peletier and D. Terman, A very singular solution of the heat equation with absorption,, Arch. Rational Mech. Anal., 95 (1986), 185. doi: 10.1007/BF00251357. Google Scholar

[4]

J. Bricmont and A. Kupiainen, Stable non-Gaussian diffusive profiles,, Nonlinear Anal., 26 (1996), 583. doi: 10.1016/0362-546X(94)00300-7. Google Scholar

[5]

Y. Chen and G. Struhl, Dual roles for patched in sequestering and transducing hedgehog,, Cell, 87 (1996), 553. Google Scholar

[6]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Birkhäuser, (1993). doi: 10.1007/978-1-4612-0327-8. Google Scholar

[7]

A. Eldar, D. Rosin, B. Z. Shilo and N. Barkai, Self-enhanced ligand degradation underlies robustness of morphogen gradients,, Devel. Cell, 5 (2003), 635. Google Scholar

[8]

M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation,, Nonlinear Anal., 11 (1987), 1103. doi: 10.1016/0362-546X(87)90001-0. Google Scholar

[9]

M. Escobedo and O. Kavian, Asymptotic behaviour of positive solutions of a nonlinear heat equation,, Houston J. Math., 14 (1988), 39. Google Scholar

[10]

M. Escobedo, O. Kavian and H. Matano, Large time behavior of solutions of a dissipative semilinear heat equation,, Comm. Partial Differential Equations, 20 (1995), 1427. doi: 10.1080/03605309508821138. Google Scholar

[11]

V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarskiĭ, Asymptotic "eigenfunctions'' of the Cauchy problem for a nonlinear parabolic equation,, Mat. Sb. (N.S.), 126 (1985), 435. Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1983). Google Scholar

[13]

A. Gmira and L. Véron, Large time behaviour of the solutions of a semilinear parabolic equation in $R^N$,, J. Differential Equations, 53 (1984), 258. doi: 10.1016/0022-0396(84)90042-1. Google Scholar

[14]

P. V. Gordon, C. Sample, A. M. Berezhkovskii, C. B. Muratov and S. Y. Shvartsman, Local kinetics of morphogen gradients,, Proc. Natl. Acad. Sci. US., 108 (2011), 6157. Google Scholar

[15]

L. Herraiz, Asymptotic behaviour of solutions of some semilinear parabolic problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 49. doi: 10.1016/S0294-1449(99)80008-0. Google Scholar

[16]

J. P. Incardona, J. H. Lee, C. P. Robertson, K. Enga, R. P. Kapur and H. Roelink, Receptor-mediated endocytosis of soluble and membrane-tethered sonic hedgehog by patched-1,, Proc. Natl. Acad. Sci. USA, 97 (2000), 12044. Google Scholar

[17]

S. Kamin and L. A. Peletier, Singular solutions of the heat equation with absorption,, Proc. Amer. Math. Soc., 95 (1985), 205. doi: 10.2307/2044513. Google Scholar

[18]

B. Kawohl, When are solutions to nonlinear elliptic boundary value problems convex?,, Comm. Partial Differential Equations, 10 (1985), 1213. doi: 10.1080/03605308508820404. Google Scholar

[19]

D. Kinderlehrer and G. Stampacchia, "An Introduction to Variational Inequalities and Their Applications,", Academic Press, (1980). Google Scholar

[20]

A. D. Lander, W. C. Lo, Q. Nie and F. Y. Wan, The measure of success: constraints, objectives, and tradeoffs in morphogen-mediated patterning,, Cold Spring Harbor Perspectives in Biology, 1 (2009). Google Scholar

[21]

M. Lucia, C. B. Muratov and M. Novaga, Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium,, Commun. Pure Appl. Math., 57 (2004), 616. doi: 10.1002/cpa.20014. Google Scholar

[22]

A. Martinez-Arias and A. Stewart, "Molecular Principles of Animal Development,", Oxford University Press, (2002). Google Scholar

[23]

C. B. Muratov, P. V. Gordon and S. Y. Shvartsman, Self-similar dynamics of morphogen gradients,, Phys. Rev. E, 84 (2011), 1. Google Scholar

[24]

L. Oswald, Isolated positive singularities for a nonlinear heat equation,, Houston J. Math., 14 (1988), 543. Google Scholar

[25]

H. G. Othmer, K. Painter, D. Umulis and C. Xue, The intersection of theory and application in elucidating pattern formation in developmental biology,, Math. Model. Nat. Phenom., 4 (2009), 3. doi: 10.1051/mmnp/20094401. Google Scholar

[26]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", Springer-Verlag, (1984). doi: 10.1007/978-1-4612-5282-5. Google Scholar

[27]

G. T. Reeves, C. B. Muratov, T. Schüpbach and S. Y. Shvartsman, Quantitative models of developmental pattern formation,, Devel. Cell, 11 (2006), 289. Google Scholar

[28]

G. Sansone, "Equazioni Differenziali nel Campo Reale,", 2. Nicola Zanichelli, 2 (1949). Google Scholar

[29]

L. Veron, A note on maximal solutions of nonlinear parabolic equations with absorption,, , (2011). Google Scholar

[30]

O. Wartlick, A. Kicheva and M. Gonzalez-Gaitan, Morphogen gradient formation,, Cold Spring Harbor Perspectives in Biology, 1 (2009). Google Scholar

[31]

C. E. Wayne, Invariant manifolds for parabolic partial differential equations on unbounded domains,, Arch. Rational Mech. Anal., 138 (1997), 279. doi: 10.1007/s002050050042. Google Scholar

show all references

References:
[1]

G. I. Barenblatt, "Scaling, Self-Similarity, and Intermediate Asymptotics,", Cambridge University Press, (1996). Google Scholar

[2]

H. Brézis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions,, J. Math. Pures Appl., 62 (1983), 73. Google Scholar

[3]

H. Brezis, L. A. Peletier and D. Terman, A very singular solution of the heat equation with absorption,, Arch. Rational Mech. Anal., 95 (1986), 185. doi: 10.1007/BF00251357. Google Scholar

[4]

J. Bricmont and A. Kupiainen, Stable non-Gaussian diffusive profiles,, Nonlinear Anal., 26 (1996), 583. doi: 10.1016/0362-546X(94)00300-7. Google Scholar

[5]

Y. Chen and G. Struhl, Dual roles for patched in sequestering and transducing hedgehog,, Cell, 87 (1996), 553. Google Scholar

[6]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Birkhäuser, (1993). doi: 10.1007/978-1-4612-0327-8. Google Scholar

[7]

A. Eldar, D. Rosin, B. Z. Shilo and N. Barkai, Self-enhanced ligand degradation underlies robustness of morphogen gradients,, Devel. Cell, 5 (2003), 635. Google Scholar

[8]

M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation,, Nonlinear Anal., 11 (1987), 1103. doi: 10.1016/0362-546X(87)90001-0. Google Scholar

[9]

M. Escobedo and O. Kavian, Asymptotic behaviour of positive solutions of a nonlinear heat equation,, Houston J. Math., 14 (1988), 39. Google Scholar

[10]

M. Escobedo, O. Kavian and H. Matano, Large time behavior of solutions of a dissipative semilinear heat equation,, Comm. Partial Differential Equations, 20 (1995), 1427. doi: 10.1080/03605309508821138. Google Scholar

[11]

V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarskiĭ, Asymptotic "eigenfunctions'' of the Cauchy problem for a nonlinear parabolic equation,, Mat. Sb. (N.S.), 126 (1985), 435. Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1983). Google Scholar

[13]

A. Gmira and L. Véron, Large time behaviour of the solutions of a semilinear parabolic equation in $R^N$,, J. Differential Equations, 53 (1984), 258. doi: 10.1016/0022-0396(84)90042-1. Google Scholar

[14]

P. V. Gordon, C. Sample, A. M. Berezhkovskii, C. B. Muratov and S. Y. Shvartsman, Local kinetics of morphogen gradients,, Proc. Natl. Acad. Sci. US., 108 (2011), 6157. Google Scholar

[15]

L. Herraiz, Asymptotic behaviour of solutions of some semilinear parabolic problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 49. doi: 10.1016/S0294-1449(99)80008-0. Google Scholar

[16]

J. P. Incardona, J. H. Lee, C. P. Robertson, K. Enga, R. P. Kapur and H. Roelink, Receptor-mediated endocytosis of soluble and membrane-tethered sonic hedgehog by patched-1,, Proc. Natl. Acad. Sci. USA, 97 (2000), 12044. Google Scholar

[17]

S. Kamin and L. A. Peletier, Singular solutions of the heat equation with absorption,, Proc. Amer. Math. Soc., 95 (1985), 205. doi: 10.2307/2044513. Google Scholar

[18]

B. Kawohl, When are solutions to nonlinear elliptic boundary value problems convex?,, Comm. Partial Differential Equations, 10 (1985), 1213. doi: 10.1080/03605308508820404. Google Scholar

[19]

D. Kinderlehrer and G. Stampacchia, "An Introduction to Variational Inequalities and Their Applications,", Academic Press, (1980). Google Scholar

[20]

A. D. Lander, W. C. Lo, Q. Nie and F. Y. Wan, The measure of success: constraints, objectives, and tradeoffs in morphogen-mediated patterning,, Cold Spring Harbor Perspectives in Biology, 1 (2009). Google Scholar

[21]

M. Lucia, C. B. Muratov and M. Novaga, Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium,, Commun. Pure Appl. Math., 57 (2004), 616. doi: 10.1002/cpa.20014. Google Scholar

[22]

A. Martinez-Arias and A. Stewart, "Molecular Principles of Animal Development,", Oxford University Press, (2002). Google Scholar

[23]

C. B. Muratov, P. V. Gordon and S. Y. Shvartsman, Self-similar dynamics of morphogen gradients,, Phys. Rev. E, 84 (2011), 1. Google Scholar

[24]

L. Oswald, Isolated positive singularities for a nonlinear heat equation,, Houston J. Math., 14 (1988), 543. Google Scholar

[25]

H. G. Othmer, K. Painter, D. Umulis and C. Xue, The intersection of theory and application in elucidating pattern formation in developmental biology,, Math. Model. Nat. Phenom., 4 (2009), 3. doi: 10.1051/mmnp/20094401. Google Scholar

[26]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", Springer-Verlag, (1984). doi: 10.1007/978-1-4612-5282-5. Google Scholar

[27]

G. T. Reeves, C. B. Muratov, T. Schüpbach and S. Y. Shvartsman, Quantitative models of developmental pattern formation,, Devel. Cell, 11 (2006), 289. Google Scholar

[28]

G. Sansone, "Equazioni Differenziali nel Campo Reale,", 2. Nicola Zanichelli, 2 (1949). Google Scholar

[29]

L. Veron, A note on maximal solutions of nonlinear parabolic equations with absorption,, , (2011). Google Scholar

[30]

O. Wartlick, A. Kicheva and M. Gonzalez-Gaitan, Morphogen gradient formation,, Cold Spring Harbor Perspectives in Biology, 1 (2009). Google Scholar

[31]

C. E. Wayne, Invariant manifolds for parabolic partial differential equations on unbounded domains,, Arch. Rational Mech. Anal., 138 (1997), 279. doi: 10.1007/s002050050042. Google Scholar

[1]

Rogelio Valdez. Self-similarity of the Mandelbrot set for real essentially bounded combinatorics. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 897-922. doi: 10.3934/dcds.2006.16.897

[2]

José Ignacio Alvarez-Hamelin, Luca Dall'Asta, Alain Barrat, Alessandro Vespignani. K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases. Networks & Heterogeneous Media, 2008, 3 (2) : 371-393. doi: 10.3934/nhm.2008.3.371

[3]

Jinzhi Lei, Dongyong Wang, You Song, Qing Nie, Frederic Y. M. Wan. Robustness of Morphogen gradients with "bucket brigade" transport through membrane-associated non-receptors. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 721-739. doi: 10.3934/dcdsb.2013.18.721

[4]

Anis Theljani, Ke Chen. An augmented lagrangian method for solving a new variational model based on gradients similarity measures and high order regulariation for multimodality registration. Inverse Problems & Imaging, 2019, 13 (2) : 309-335. doi: 10.3934/ipi.2019016

[5]

Jose Carlos Camacho, Maria de los Santos Bruzon. Similarity reductions of a nonlinear model for vibrations of beams. Conference Publications, 2015, 2015 (special) : 176-184. doi: 10.3934/proc.2015.0176

[6]

Vassilis G. Papanicolaou, Kyriaki Vasilakopoulou. Similarity solutions of a multidimensional replicator dynamics integrodifferential equation. Journal of Dynamics & Games, 2016, 3 (1) : 51-74. doi: 10.3934/jdg.2016003

[7]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[8]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[9]

Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246

[10]

Bernard Brighi, Tewfik Sari. Blowing-up coordinates for a similarity boundary layer equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 929-948. doi: 10.3934/dcds.2005.12.929

[11]

Roy H. Goodman, Jeremy L. Marzuola, Michael I. Weinstein. Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 225-246. doi: 10.3934/dcds.2015.35.225

[12]

Arthur D. Lander, Qing Nie, Frederic Y. M. Wan. Spatially Distributed Morphogen Production and Morphogen Gradient Formation. Mathematical Biosciences & Engineering, 2005, 2 (2) : 239-262. doi: 10.3934/mbe.2005.2.239

[13]

Chunpeng Wang, Jingxue Yin, Bibo Lu. Anti-shifting phenomenon of a convective nonlinear diffusion equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1211-1236. doi: 10.3934/dcdsb.2010.14.1211

[14]

Giuseppe Tomassetti. Smooth and non-smooth regularizations of the nonlinear diffusion equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1519-1537. doi: 10.3934/dcdss.2017078

[15]

Chunhua Jin, Jingxue Yin. Periodic solutions of a non-divergent diffusion equation with nonlinear sources. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 101-126. doi: 10.3934/dcdsb.2012.17.101

[16]

Tracy L. Stepien, Hal L. Smith. Existence and uniqueness of similarity solutions of a generalized heat equation arising in a model of cell migration. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3203-3216. doi: 10.3934/dcds.2015.35.3203

[17]

David Iron, Adeela Syed, Heidi Theisen, Tamas Lukacsovich, Mehrangiz Naghibi, Lawrence J. Marsh, Frederic Y. M. Wan, Qing Nie. The role of feedback in the formation of morphogen territories. Mathematical Biosciences & Engineering, 2008, 5 (2) : 277-298. doi: 10.3934/mbe.2008.5.277

[18]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[19]

Jibin Li, Yi Zhang. On the traveling wave solutions for a nonlinear diffusion-convection equation: Dynamical system approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1119-1138. doi: 10.3934/dcdsb.2010.14.1119

[20]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]