-
Previous Article
Towards classification of multiple-end solutions to the Allen-Cahn equation in $\mathbb{R}^2$
- NHM Home
- This Issue
-
Next Article
Singular limit of an activator-inhibitor type model
Small populations corrections for selection-mutation models
1. | CSCAMM and Department of Mathematics, University of Maryland, College Park, MD 20742-4015, United States |
References:
[1] |
, M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations". |
[2] |
G. Barles, "Solutions de Viscosite et Équations de Hamilton-Jacobi," Collec. SMAI, Springer-Verlag, 2002. |
[3] |
G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result, Methods Appl. Anal., 16 (2009), 321-340. |
[4] |
G. Barles and B. Perthame, Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics, Recent Developments in Nonlinear Partial Differential Equations, 57-68, Contemp. Math., 439, Amer. Math. Soc., Providence, RI, (2007).
doi: 10.1090/conm/439/08463. |
[5] |
R. Bürger and I. M. Bomze, Stationary distributions under mutation-selection balance: structure and properties, Adv. Appl. Prob., 28 (1996), 227-251.
doi: 10.2307/1427919. |
[6] |
A. Calsina and S. Cuadrado, Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics, J. Math. Biol., 48 (2004), 135-159.
doi: 10.1007/s00285-003-0226-6. |
[7] |
J. A. Carrillo, S. Cuadrado and B. Perthame, Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model, Math. Biosci., 205 (2007), 137-161.
doi: 10.1016/j.mbs.2006.09.012. |
[8] |
N. Champagnat, A microscopic interpretation for adaptive dynamics trait substitution sequence models, Stoch. Proc. Appl., 116 (2006), 1127-1160.
doi: 10.1016/j.spa.2006.01.004. |
[9] |
N. Champagnat, R. Ferrière and G. Ben Arous, The canonical equation of adaptive dynamics: A mathematical view, Selection, 2 (2001), 71-81. |
[10] |
N. Champagnat, R. Ferrière and S. Méléard, From individual stochastic processes to macroscopic models in adaptive evolution, Stoch. Models, 24 (2008), 2-44.
doi: 10.1080/15326340802437710. |
[11] |
N. Champagnat and P.-E. Jabin, The evolutionary limit for models of populations interacting competitively via several resources, J. Differential Equations 251 (2011), 176-195.
doi: 10.1016/j.jde.2011.03.007. |
[12] |
N. Champagnat, P.-E. Jabin and G. Raoul, Convergence to equilibrium in competitive Lotka-Volterra and chemostat systems, C. R. Math. Acad. Sci. Paris, 348 (2010), 1267-1272.
doi: 10.1016/j.crma.2010.11.001. |
[13] |
N. Champagnat and S. Méléard, Polymorphic evolution sequence and evolutionary branching, To appear in Probab. Theory Relat. Fields (published online, 2010).
doi: 10.1007/s00440-010-0292-9. |
[14] |
M. G. Crandall and P.-L. Lions, Users guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 167. |
[15] |
R. Cressman and J. Hofbauer, Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics, Theor. Pop. Biol., 67 (2005), 47-59. |
[16] |
L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations, Commun. Math. Sci., 6 (2008), 729-747. |
[17] |
U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612.
doi: 10.1007/s002850050022. |
[18] |
O. Diekmann, A beginner's guide to adaptive dynamics. In Mathematical modelling of population dynamics, Banach Center Publ., 63, 47-86, Polish Acad. Sci., Warsaw, (2004). |
[19] |
O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory, J. Math. Biol., 43 (2001), 157-189.
doi: 10.1007/s002850170002. |
[20] |
O. Diekmann, P. E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol., 67 (2005), 257-271. |
[21] |
S. Genieys, N. Bessonov and V. Volpert, Mathematical model of evolutionary branching, Math. Comput. Modelling, 49 (2009), 2109-2115.
doi: 10.1016/j.mcm.2008.07.018. |
[22] |
S. A. H. Geritz, J. A. J. Metz, E. Kisdi and G. Meszéna, Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78 (1997), 2024-2027. |
[23] |
S. A. H. Geritz, E. Kisdi, G. Meszéna and J. A. J. Metz, Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12 (1998), 35-57. |
[24] |
M. Gyllenberg and G. Meszéna, On the impossibility of coexistence of infinitely many strategies, J. Math. Biol., 50 (2005), 133-160.
doi: 10.1007/s00285-004-0283-5. |
[25] |
J. Hofbauer and R. Sigmund, Adaptive dynamics and evolutionary stability, Applied Math. Letters, 3 (1990), 75-79.
doi: 10.1016/0893-9659(90)90051-C. |
[26] |
P. E. Jabin and G. Raoul, Selection dynamics with competition, J. Math. Biol., 63 (2011), 493-517.
doi: 10.1007/s00285-010-0370-8. |
[27] |
A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Differential Equations, 36 (2011), 1071-1098.
doi: 10.1080/03605302.2010.538784. |
[28] |
S. Méléard, Introduction to stochastic models for evolution, Markov Process. Related Fields, 15 (2009), 259-264. |
[29] |
S. Méléard and V. C. Tran, Trait substitution sequence process and canonical equation for age-structured populations, J. Math. Biol., 58 (2009), 881-921.
doi: 10.1007/s00285-008-0202-2. |
[30] |
J. A. J. Metz, R. M. Nisbet and S. A. H. Geritz, How should we define 'fitness' for general ecological scenarios?, Trends in Ecology and Evolution, 7 (1992), 198-202. |
[31] |
J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. A. J. Jacobs and J. S. van Heerwaarden, Adaptive Dynamics, a geometrical study of the consequences of nearly faithful reproduction, in "Stochastic and Spatial Structures of Dynamical Systems" (eds. S. J. van Strien & S. M. Verduyn Lunel), North Holland, Amsterdam, (1996), 183-231. |
[32] |
S. Mirrahimi, G. Barles, B. Perthame and P. E. Souganidis, Singular Hamilton-Jacobi equation for the tail problem, Submitted. |
[33] |
B. Perthame and M. Gauduchon, Survival thresholds and mortality rates in adaptive dynamics: Conciliating deterministic and stochastic simulations, IMA Journal of Mathematical Medicine and Biology, to appear (published online, 2009).
doi: 10.1093/imammb/dqp018. |
[34] |
B. Perthame and S. Génieys, Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit, Math. Model. Nat. Phenom., 2 (2007), 135-151.
doi: 10.1051/mmnp:2008029. |
[35] |
G. Raoul, Long time evolution of populations under selection and rare mutations, Acta Applicandae Mathematica, 114 (2011), 114.
doi: 10.1007/s10440-011-9603-0. |
[36] |
F. Yu, Stationary distributions of a model of sympatric speciation, Ann. Appl. Probab., 17 (2007), 840-874.
doi: 10.1214/105051606000000916. |
show all references
References:
[1] |
, M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations". |
[2] |
G. Barles, "Solutions de Viscosite et Équations de Hamilton-Jacobi," Collec. SMAI, Springer-Verlag, 2002. |
[3] |
G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result, Methods Appl. Anal., 16 (2009), 321-340. |
[4] |
G. Barles and B. Perthame, Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics, Recent Developments in Nonlinear Partial Differential Equations, 57-68, Contemp. Math., 439, Amer. Math. Soc., Providence, RI, (2007).
doi: 10.1090/conm/439/08463. |
[5] |
R. Bürger and I. M. Bomze, Stationary distributions under mutation-selection balance: structure and properties, Adv. Appl. Prob., 28 (1996), 227-251.
doi: 10.2307/1427919. |
[6] |
A. Calsina and S. Cuadrado, Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics, J. Math. Biol., 48 (2004), 135-159.
doi: 10.1007/s00285-003-0226-6. |
[7] |
J. A. Carrillo, S. Cuadrado and B. Perthame, Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model, Math. Biosci., 205 (2007), 137-161.
doi: 10.1016/j.mbs.2006.09.012. |
[8] |
N. Champagnat, A microscopic interpretation for adaptive dynamics trait substitution sequence models, Stoch. Proc. Appl., 116 (2006), 1127-1160.
doi: 10.1016/j.spa.2006.01.004. |
[9] |
N. Champagnat, R. Ferrière and G. Ben Arous, The canonical equation of adaptive dynamics: A mathematical view, Selection, 2 (2001), 71-81. |
[10] |
N. Champagnat, R. Ferrière and S. Méléard, From individual stochastic processes to macroscopic models in adaptive evolution, Stoch. Models, 24 (2008), 2-44.
doi: 10.1080/15326340802437710. |
[11] |
N. Champagnat and P.-E. Jabin, The evolutionary limit for models of populations interacting competitively via several resources, J. Differential Equations 251 (2011), 176-195.
doi: 10.1016/j.jde.2011.03.007. |
[12] |
N. Champagnat, P.-E. Jabin and G. Raoul, Convergence to equilibrium in competitive Lotka-Volterra and chemostat systems, C. R. Math. Acad. Sci. Paris, 348 (2010), 1267-1272.
doi: 10.1016/j.crma.2010.11.001. |
[13] |
N. Champagnat and S. Méléard, Polymorphic evolution sequence and evolutionary branching, To appear in Probab. Theory Relat. Fields (published online, 2010).
doi: 10.1007/s00440-010-0292-9. |
[14] |
M. G. Crandall and P.-L. Lions, Users guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 167. |
[15] |
R. Cressman and J. Hofbauer, Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics, Theor. Pop. Biol., 67 (2005), 47-59. |
[16] |
L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations, Commun. Math. Sci., 6 (2008), 729-747. |
[17] |
U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612.
doi: 10.1007/s002850050022. |
[18] |
O. Diekmann, A beginner's guide to adaptive dynamics. In Mathematical modelling of population dynamics, Banach Center Publ., 63, 47-86, Polish Acad. Sci., Warsaw, (2004). |
[19] |
O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory, J. Math. Biol., 43 (2001), 157-189.
doi: 10.1007/s002850170002. |
[20] |
O. Diekmann, P. E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol., 67 (2005), 257-271. |
[21] |
S. Genieys, N. Bessonov and V. Volpert, Mathematical model of evolutionary branching, Math. Comput. Modelling, 49 (2009), 2109-2115.
doi: 10.1016/j.mcm.2008.07.018. |
[22] |
S. A. H. Geritz, J. A. J. Metz, E. Kisdi and G. Meszéna, Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78 (1997), 2024-2027. |
[23] |
S. A. H. Geritz, E. Kisdi, G. Meszéna and J. A. J. Metz, Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12 (1998), 35-57. |
[24] |
M. Gyllenberg and G. Meszéna, On the impossibility of coexistence of infinitely many strategies, J. Math. Biol., 50 (2005), 133-160.
doi: 10.1007/s00285-004-0283-5. |
[25] |
J. Hofbauer and R. Sigmund, Adaptive dynamics and evolutionary stability, Applied Math. Letters, 3 (1990), 75-79.
doi: 10.1016/0893-9659(90)90051-C. |
[26] |
P. E. Jabin and G. Raoul, Selection dynamics with competition, J. Math. Biol., 63 (2011), 493-517.
doi: 10.1007/s00285-010-0370-8. |
[27] |
A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Differential Equations, 36 (2011), 1071-1098.
doi: 10.1080/03605302.2010.538784. |
[28] |
S. Méléard, Introduction to stochastic models for evolution, Markov Process. Related Fields, 15 (2009), 259-264. |
[29] |
S. Méléard and V. C. Tran, Trait substitution sequence process and canonical equation for age-structured populations, J. Math. Biol., 58 (2009), 881-921.
doi: 10.1007/s00285-008-0202-2. |
[30] |
J. A. J. Metz, R. M. Nisbet and S. A. H. Geritz, How should we define 'fitness' for general ecological scenarios?, Trends in Ecology and Evolution, 7 (1992), 198-202. |
[31] |
J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. A. J. Jacobs and J. S. van Heerwaarden, Adaptive Dynamics, a geometrical study of the consequences of nearly faithful reproduction, in "Stochastic and Spatial Structures of Dynamical Systems" (eds. S. J. van Strien & S. M. Verduyn Lunel), North Holland, Amsterdam, (1996), 183-231. |
[32] |
S. Mirrahimi, G. Barles, B. Perthame and P. E. Souganidis, Singular Hamilton-Jacobi equation for the tail problem, Submitted. |
[33] |
B. Perthame and M. Gauduchon, Survival thresholds and mortality rates in adaptive dynamics: Conciliating deterministic and stochastic simulations, IMA Journal of Mathematical Medicine and Biology, to appear (published online, 2009).
doi: 10.1093/imammb/dqp018. |
[34] |
B. Perthame and S. Génieys, Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit, Math. Model. Nat. Phenom., 2 (2007), 135-151.
doi: 10.1051/mmnp:2008029. |
[35] |
G. Raoul, Long time evolution of populations under selection and rare mutations, Acta Applicandae Mathematica, 114 (2011), 114.
doi: 10.1007/s10440-011-9603-0. |
[36] |
F. Yu, Stationary distributions of a model of sympatric speciation, Ann. Appl. Probab., 17 (2007), 840-874.
doi: 10.1214/105051606000000916. |
[1] |
Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295 |
[2] |
Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421 |
[3] |
Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461 |
[4] |
Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513 |
[5] |
María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207 |
[6] |
Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441 |
[7] |
Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493 |
[8] |
Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations and Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026 |
[9] |
Yuxiang Li. Stabilization towards the steady state for a viscous Hamilton-Jacobi equation. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1917-1924. doi: 10.3934/cpaa.2009.8.1917 |
[10] |
Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231 |
[11] |
Renato Iturriaga, Héctor Sánchez-Morgado. Limit of the infinite horizon discounted Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 623-635. doi: 10.3934/dcdsb.2011.15.623 |
[12] |
Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363 |
[13] |
Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461 |
[14] |
Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121 |
[15] |
Gonzalo Dávila. Comparison principles for nonlocal Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022061 |
[16] |
Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159 |
[17] |
Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : i-iii. doi: 10.3934/dcdss.201805i |
[18] |
Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291 |
[19] |
Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317 |
[20] |
Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]