December  2012, 7(4): 857-879. doi: 10.3934/nhm.2012.7.857

Self-similar solutions in a sector for a quasilinear parabolic equation

1. 

Department of Mathematics, Tongji University, Shanghai 200092

Received  January 2012 Revised  October 2012 Published  December 2012

We study a two-point free boundary problem in a sector for a quasilinear parabolic equation. The boundary conditions are assumed to be spatially and temporally "self-similar" in a special way. We prove the existence, uniqueness and asymptotic stability of an expanding solution which is self-similar at discrete times. We also study the existence and uniqueness of a shrinking solution which is self-similar at discrete times.
Citation: Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks & Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857
References:
[1]

P. Brunovský, P. Poláčik and B. Sandstede, Convergence in general periodic parabolic equation in one space dimension,, Nonlinear Anal., 18 (1992), 209.  doi: 10.1016/0362-546X(92)90059-N.  Google Scholar

[2]

Y.-L. Chang, J.-S. Guo and Y. Kohsaka, On a two-point free boundary problem for a quasilinear parabolic equation,, Asymptotic Anal., 34 (2003), 333.   Google Scholar

[3]

X. Chen and J.-S. Guo, Motion by curvature of planar curves with end points moving freely on a line,, Math. Ann., 350 (2011), 277.  doi: 10.1007/s00208-010-0558-7.  Google Scholar

[4]

H.-H. Chern, J.-S. Guo and C.-P. Lo, The self-similar expanding curve for the curvature flow equation,, Proc. Amer. Math. Soc., 131 (2003), 3191.  doi: 10.1090/S0002-9939-03-07055-2.  Google Scholar

[5]

G. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations,, J. Partial Differential Equations, 1 (1988), 12.   Google Scholar

[6]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964).   Google Scholar

[7]

M.-H. Giga, Y. Giga and H. Hontani, Selfsimilar expanding solutions in a sector for a crystalline flow,, SIAM J. Math. Anal., 37 (2005), 1207.  doi: 10.1137/040614372.  Google Scholar

[8]

J.-S. Guo and B. Hu, A shrinking two-point free boundary problem for a quasilinear parabolic equation,, Quart. Appl. Math., 64 (2006), 413.   Google Scholar

[9]

J.-S. Guo and Y. Kohsaka, Self-similar solutions of two-point free boundary problem for heat equation,, in, (2002), 94.   Google Scholar

[10]

D. Hilhorst, R. van der Hout, M. Mimura and I. Ohnishi, A mathematical study of the one-dimensional Keller and Rubinow model for Liesegang bands,, J. Stat. Phys., 135 (2009), 107.  doi: 10.1007/s10955-009-9701-9.  Google Scholar

[11]

J. B. Keller and S. I. Rubinow, Recurrent precipitation and Liesegang rings,, J. Chem. Phys., 74 (1981), 5000.  doi: 10.1063/1.441752.  Google Scholar

[12]

Y. Kohsaka, Free boundary problem for quasilinear parabolic equation with fixed angle of contact to a boundary,, Nonlinear Anal., 45 (2001), 865.  doi: 10.1016/S0362-546X(99)00422-8.  Google Scholar

[13]

G. M. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific Publishing Co., (1996).   Google Scholar

[14]

O. A. Ladyzhenskia, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasi-linear Equations of Parabolic Type,", Amer. Math. Soc., (1968).   Google Scholar

[15]

B. Lou, H. Matano and K. I. Nakamura, Recurrent traveling waves in a two-dimensional saw-toothed cylinder and their average speed,, preprint., ().   Google Scholar

[16]

H. Matano, K. I. Nakamura and B. Lou, Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit,, Netw. Heterog. Media, 1 (2006), 537.  doi: 10.3934/nhm.2006.1.537.  Google Scholar

[17]

D. A. V. Stow, "Sedimentary Rocks in the Field: A Color Guide,", Academic Press, (2005).   Google Scholar

[18]

K. H. W. J. Ten Tusscher and A. V. Panfilov, Wave propagation in excitable media with randomly distributed obstacles,, Multiscale Model. Simul., 3 (2005), 265.  doi: 10.1137/030602654.  Google Scholar

show all references

References:
[1]

P. Brunovský, P. Poláčik and B. Sandstede, Convergence in general periodic parabolic equation in one space dimension,, Nonlinear Anal., 18 (1992), 209.  doi: 10.1016/0362-546X(92)90059-N.  Google Scholar

[2]

Y.-L. Chang, J.-S. Guo and Y. Kohsaka, On a two-point free boundary problem for a quasilinear parabolic equation,, Asymptotic Anal., 34 (2003), 333.   Google Scholar

[3]

X. Chen and J.-S. Guo, Motion by curvature of planar curves with end points moving freely on a line,, Math. Ann., 350 (2011), 277.  doi: 10.1007/s00208-010-0558-7.  Google Scholar

[4]

H.-H. Chern, J.-S. Guo and C.-P. Lo, The self-similar expanding curve for the curvature flow equation,, Proc. Amer. Math. Soc., 131 (2003), 3191.  doi: 10.1090/S0002-9939-03-07055-2.  Google Scholar

[5]

G. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations,, J. Partial Differential Equations, 1 (1988), 12.   Google Scholar

[6]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964).   Google Scholar

[7]

M.-H. Giga, Y. Giga and H. Hontani, Selfsimilar expanding solutions in a sector for a crystalline flow,, SIAM J. Math. Anal., 37 (2005), 1207.  doi: 10.1137/040614372.  Google Scholar

[8]

J.-S. Guo and B. Hu, A shrinking two-point free boundary problem for a quasilinear parabolic equation,, Quart. Appl. Math., 64 (2006), 413.   Google Scholar

[9]

J.-S. Guo and Y. Kohsaka, Self-similar solutions of two-point free boundary problem for heat equation,, in, (2002), 94.   Google Scholar

[10]

D. Hilhorst, R. van der Hout, M. Mimura and I. Ohnishi, A mathematical study of the one-dimensional Keller and Rubinow model for Liesegang bands,, J. Stat. Phys., 135 (2009), 107.  doi: 10.1007/s10955-009-9701-9.  Google Scholar

[11]

J. B. Keller and S. I. Rubinow, Recurrent precipitation and Liesegang rings,, J. Chem. Phys., 74 (1981), 5000.  doi: 10.1063/1.441752.  Google Scholar

[12]

Y. Kohsaka, Free boundary problem for quasilinear parabolic equation with fixed angle of contact to a boundary,, Nonlinear Anal., 45 (2001), 865.  doi: 10.1016/S0362-546X(99)00422-8.  Google Scholar

[13]

G. M. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific Publishing Co., (1996).   Google Scholar

[14]

O. A. Ladyzhenskia, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasi-linear Equations of Parabolic Type,", Amer. Math. Soc., (1968).   Google Scholar

[15]

B. Lou, H. Matano and K. I. Nakamura, Recurrent traveling waves in a two-dimensional saw-toothed cylinder and their average speed,, preprint., ().   Google Scholar

[16]

H. Matano, K. I. Nakamura and B. Lou, Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit,, Netw. Heterog. Media, 1 (2006), 537.  doi: 10.3934/nhm.2006.1.537.  Google Scholar

[17]

D. A. V. Stow, "Sedimentary Rocks in the Field: A Color Guide,", Academic Press, (2005).   Google Scholar

[18]

K. H. W. J. Ten Tusscher and A. V. Panfilov, Wave propagation in excitable media with randomly distributed obstacles,, Multiscale Model. Simul., 3 (2005), 265.  doi: 10.1137/030602654.  Google Scholar

[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[3]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[4]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[5]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[8]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[9]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[10]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[11]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[12]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[13]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[14]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[15]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[16]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[17]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[18]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[19]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[20]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]