December  2012, 7(4): 857-879. doi: 10.3934/nhm.2012.7.857

Self-similar solutions in a sector for a quasilinear parabolic equation

1. 

Department of Mathematics, Tongji University, Shanghai 200092

Received  January 2012 Revised  October 2012 Published  December 2012

We study a two-point free boundary problem in a sector for a quasilinear parabolic equation. The boundary conditions are assumed to be spatially and temporally "self-similar" in a special way. We prove the existence, uniqueness and asymptotic stability of an expanding solution which is self-similar at discrete times. We also study the existence and uniqueness of a shrinking solution which is self-similar at discrete times.
Citation: Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks & Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857
References:
[1]

P. Brunovský, P. Poláčik and B. Sandstede, Convergence in general periodic parabolic equation in one space dimension,, Nonlinear Anal., 18 (1992), 209. doi: 10.1016/0362-546X(92)90059-N.

[2]

Y.-L. Chang, J.-S. Guo and Y. Kohsaka, On a two-point free boundary problem for a quasilinear parabolic equation,, Asymptotic Anal., 34 (2003), 333.

[3]

X. Chen and J.-S. Guo, Motion by curvature of planar curves with end points moving freely on a line,, Math. Ann., 350 (2011), 277. doi: 10.1007/s00208-010-0558-7.

[4]

H.-H. Chern, J.-S. Guo and C.-P. Lo, The self-similar expanding curve for the curvature flow equation,, Proc. Amer. Math. Soc., 131 (2003), 3191. doi: 10.1090/S0002-9939-03-07055-2.

[5]

G. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations,, J. Partial Differential Equations, 1 (1988), 12.

[6]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964).

[7]

M.-H. Giga, Y. Giga and H. Hontani, Selfsimilar expanding solutions in a sector for a crystalline flow,, SIAM J. Math. Anal., 37 (2005), 1207. doi: 10.1137/040614372.

[8]

J.-S. Guo and B. Hu, A shrinking two-point free boundary problem for a quasilinear parabolic equation,, Quart. Appl. Math., 64 (2006), 413.

[9]

J.-S. Guo and Y. Kohsaka, Self-similar solutions of two-point free boundary problem for heat equation,, in, (2002), 94.

[10]

D. Hilhorst, R. van der Hout, M. Mimura and I. Ohnishi, A mathematical study of the one-dimensional Keller and Rubinow model for Liesegang bands,, J. Stat. Phys., 135 (2009), 107. doi: 10.1007/s10955-009-9701-9.

[11]

J. B. Keller and S. I. Rubinow, Recurrent precipitation and Liesegang rings,, J. Chem. Phys., 74 (1981), 5000. doi: 10.1063/1.441752.

[12]

Y. Kohsaka, Free boundary problem for quasilinear parabolic equation with fixed angle of contact to a boundary,, Nonlinear Anal., 45 (2001), 865. doi: 10.1016/S0362-546X(99)00422-8.

[13]

G. M. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific Publishing Co., (1996).

[14]

O. A. Ladyzhenskia, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasi-linear Equations of Parabolic Type,", Amer. Math. Soc., (1968).

[15]

B. Lou, H. Matano and K. I. Nakamura, Recurrent traveling waves in a two-dimensional saw-toothed cylinder and their average speed,, preprint., ().

[16]

H. Matano, K. I. Nakamura and B. Lou, Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit,, Netw. Heterog. Media, 1 (2006), 537. doi: 10.3934/nhm.2006.1.537.

[17]

D. A. V. Stow, "Sedimentary Rocks in the Field: A Color Guide,", Academic Press, (2005).

[18]

K. H. W. J. Ten Tusscher and A. V. Panfilov, Wave propagation in excitable media with randomly distributed obstacles,, Multiscale Model. Simul., 3 (2005), 265. doi: 10.1137/030602654.

show all references

References:
[1]

P. Brunovský, P. Poláčik and B. Sandstede, Convergence in general periodic parabolic equation in one space dimension,, Nonlinear Anal., 18 (1992), 209. doi: 10.1016/0362-546X(92)90059-N.

[2]

Y.-L. Chang, J.-S. Guo and Y. Kohsaka, On a two-point free boundary problem for a quasilinear parabolic equation,, Asymptotic Anal., 34 (2003), 333.

[3]

X. Chen and J.-S. Guo, Motion by curvature of planar curves with end points moving freely on a line,, Math. Ann., 350 (2011), 277. doi: 10.1007/s00208-010-0558-7.

[4]

H.-H. Chern, J.-S. Guo and C.-P. Lo, The self-similar expanding curve for the curvature flow equation,, Proc. Amer. Math. Soc., 131 (2003), 3191. doi: 10.1090/S0002-9939-03-07055-2.

[5]

G. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations,, J. Partial Differential Equations, 1 (1988), 12.

[6]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964).

[7]

M.-H. Giga, Y. Giga and H. Hontani, Selfsimilar expanding solutions in a sector for a crystalline flow,, SIAM J. Math. Anal., 37 (2005), 1207. doi: 10.1137/040614372.

[8]

J.-S. Guo and B. Hu, A shrinking two-point free boundary problem for a quasilinear parabolic equation,, Quart. Appl. Math., 64 (2006), 413.

[9]

J.-S. Guo and Y. Kohsaka, Self-similar solutions of two-point free boundary problem for heat equation,, in, (2002), 94.

[10]

D. Hilhorst, R. van der Hout, M. Mimura and I. Ohnishi, A mathematical study of the one-dimensional Keller and Rubinow model for Liesegang bands,, J. Stat. Phys., 135 (2009), 107. doi: 10.1007/s10955-009-9701-9.

[11]

J. B. Keller and S. I. Rubinow, Recurrent precipitation and Liesegang rings,, J. Chem. Phys., 74 (1981), 5000. doi: 10.1063/1.441752.

[12]

Y. Kohsaka, Free boundary problem for quasilinear parabolic equation with fixed angle of contact to a boundary,, Nonlinear Anal., 45 (2001), 865. doi: 10.1016/S0362-546X(99)00422-8.

[13]

G. M. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific Publishing Co., (1996).

[14]

O. A. Ladyzhenskia, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasi-linear Equations of Parabolic Type,", Amer. Math. Soc., (1968).

[15]

B. Lou, H. Matano and K. I. Nakamura, Recurrent traveling waves in a two-dimensional saw-toothed cylinder and their average speed,, preprint., ().

[16]

H. Matano, K. I. Nakamura and B. Lou, Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit,, Netw. Heterog. Media, 1 (2006), 537. doi: 10.3934/nhm.2006.1.537.

[17]

D. A. V. Stow, "Sedimentary Rocks in the Field: A Color Guide,", Academic Press, (2005).

[18]

K. H. W. J. Ten Tusscher and A. V. Panfilov, Wave propagation in excitable media with randomly distributed obstacles,, Multiscale Model. Simul., 3 (2005), 265. doi: 10.1137/030602654.

[1]

Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313

[2]

Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897

[3]

Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703

[4]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[5]

L. Olsen. Rates of convergence towards the boundary of a self-similar set. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 799-811. doi: 10.3934/dcds.2007.19.799

[6]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[7]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[8]

Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002

[9]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[10]

Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493

[11]

Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323

[12]

Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198

[13]

Anna Chiara Lai, Paola Loreti. Self-similar control systems and applications to zygodactyl bird's foot. Networks & Heterogeneous Media, 2015, 10 (2) : 401-419. doi: 10.3934/nhm.2015.10.401

[14]

D. G. Aronson. Self-similar focusing in porous media: An explicit calculation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1685-1691. doi: 10.3934/dcdsb.2012.17.1685

[15]

G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131

[16]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

[17]

F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91

[18]

Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003

[19]

Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036

[20]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]