
Previous Article
Towards classification of multipleend solutions to the AllenCahn equation in $\mathbb{R}^2$
 NHM Home
 This Issue

Next Article
Periodically growing solutions in a class of strongly monotone semiflows
Selfsimilar solutions in a sector for a quasilinear parabolic equation
1.  Department of Mathematics, Tongji University, Shanghai 200092 
References:
[1] 
P. Brunovský, P. Poláčik and B. Sandstede, Convergence in general periodic parabolic equation in one space dimension,, Nonlinear Anal., 18 (1992), 209. doi: 10.1016/0362546X(92)90059N. 
[2] 
Y.L. Chang, J.S. Guo and Y. Kohsaka, On a twopoint free boundary problem for a quasilinear parabolic equation,, Asymptotic Anal., 34 (2003), 333. 
[3] 
X. Chen and J.S. Guo, Motion by curvature of planar curves with end points moving freely on a line,, Math. Ann., 350 (2011), 277. doi: 10.1007/s0020801005587. 
[4] 
H.H. Chern, J.S. Guo and C.P. Lo, The selfsimilar expanding curve for the curvature flow equation,, Proc. Amer. Math. Soc., 131 (2003), 3191. doi: 10.1090/S0002993903070552. 
[5] 
G. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations,, J. Partial Differential Equations, 1 (1988), 12. 
[6] 
A. Friedman, "Partial Differential Equations of Parabolic Type,", PrenticeHall, (1964). 
[7] 
M.H. Giga, Y. Giga and H. Hontani, Selfsimilar expanding solutions in a sector for a crystalline flow,, SIAM J. Math. Anal., 37 (2005), 1207. doi: 10.1137/040614372. 
[8] 
J.S. Guo and B. Hu, A shrinking twopoint free boundary problem for a quasilinear parabolic equation,, Quart. Appl. Math., 64 (2006), 413. 
[9] 
J.S. Guo and Y. Kohsaka, Selfsimilar solutions of twopoint free boundary problem for heat equation,, in, (2002), 94. 
[10] 
D. Hilhorst, R. van der Hout, M. Mimura and I. Ohnishi, A mathematical study of the onedimensional Keller and Rubinow model for Liesegang bands,, J. Stat. Phys., 135 (2009), 107. doi: 10.1007/s1095500997019. 
[11] 
J. B. Keller and S. I. Rubinow, Recurrent precipitation and Liesegang rings,, J. Chem. Phys., 74 (1981), 5000. doi: 10.1063/1.441752. 
[12] 
Y. Kohsaka, Free boundary problem for quasilinear parabolic equation with fixed angle of contact to a boundary,, Nonlinear Anal., 45 (2001), 865. doi: 10.1016/S0362546X(99)004228. 
[13] 
G. M. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific Publishing Co., (1996). 
[14] 
O. A. Ladyzhenskia, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasilinear Equations of Parabolic Type,", Amer. Math. Soc., (1968). 
[15] 
B. Lou, H. Matano and K. I. Nakamura, Recurrent traveling waves in a twodimensional sawtoothed cylinder and their average speed,, preprint., (). 
[16] 
H. Matano, K. I. Nakamura and B. Lou, Periodic traveling waves in a twodimensional cylinder with sawtoothed boundary and their homogenization limit,, Netw. Heterog. Media, 1 (2006), 537. doi: 10.3934/nhm.2006.1.537. 
[17] 
D. A. V. Stow, "Sedimentary Rocks in the Field: A Color Guide,", Academic Press, (2005). 
[18] 
K. H. W. J. Ten Tusscher and A. V. Panfilov, Wave propagation in excitable media with randomly distributed obstacles,, Multiscale Model. Simul., 3 (2005), 265. doi: 10.1137/030602654. 
show all references
References:
[1] 
P. Brunovský, P. Poláčik and B. Sandstede, Convergence in general periodic parabolic equation in one space dimension,, Nonlinear Anal., 18 (1992), 209. doi: 10.1016/0362546X(92)90059N. 
[2] 
Y.L. Chang, J.S. Guo and Y. Kohsaka, On a twopoint free boundary problem for a quasilinear parabolic equation,, Asymptotic Anal., 34 (2003), 333. 
[3] 
X. Chen and J.S. Guo, Motion by curvature of planar curves with end points moving freely on a line,, Math. Ann., 350 (2011), 277. doi: 10.1007/s0020801005587. 
[4] 
H.H. Chern, J.S. Guo and C.P. Lo, The selfsimilar expanding curve for the curvature flow equation,, Proc. Amer. Math. Soc., 131 (2003), 3191. doi: 10.1090/S0002993903070552. 
[5] 
G. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations,, J. Partial Differential Equations, 1 (1988), 12. 
[6] 
A. Friedman, "Partial Differential Equations of Parabolic Type,", PrenticeHall, (1964). 
[7] 
M.H. Giga, Y. Giga and H. Hontani, Selfsimilar expanding solutions in a sector for a crystalline flow,, SIAM J. Math. Anal., 37 (2005), 1207. doi: 10.1137/040614372. 
[8] 
J.S. Guo and B. Hu, A shrinking twopoint free boundary problem for a quasilinear parabolic equation,, Quart. Appl. Math., 64 (2006), 413. 
[9] 
J.S. Guo and Y. Kohsaka, Selfsimilar solutions of twopoint free boundary problem for heat equation,, in, (2002), 94. 
[10] 
D. Hilhorst, R. van der Hout, M. Mimura and I. Ohnishi, A mathematical study of the onedimensional Keller and Rubinow model for Liesegang bands,, J. Stat. Phys., 135 (2009), 107. doi: 10.1007/s1095500997019. 
[11] 
J. B. Keller and S. I. Rubinow, Recurrent precipitation and Liesegang rings,, J. Chem. Phys., 74 (1981), 5000. doi: 10.1063/1.441752. 
[12] 
Y. Kohsaka, Free boundary problem for quasilinear parabolic equation with fixed angle of contact to a boundary,, Nonlinear Anal., 45 (2001), 865. doi: 10.1016/S0362546X(99)004228. 
[13] 
G. M. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific Publishing Co., (1996). 
[14] 
O. A. Ladyzhenskia, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasilinear Equations of Parabolic Type,", Amer. Math. Soc., (1968). 
[15] 
B. Lou, H. Matano and K. I. Nakamura, Recurrent traveling waves in a twodimensional sawtoothed cylinder and their average speed,, preprint., (). 
[16] 
H. Matano, K. I. Nakamura and B. Lou, Periodic traveling waves in a twodimensional cylinder with sawtoothed boundary and their homogenization limit,, Netw. Heterog. Media, 1 (2006), 537. doi: 10.3934/nhm.2006.1.537. 
[17] 
D. A. V. Stow, "Sedimentary Rocks in the Field: A Color Guide,", Academic Press, (2005). 
[18] 
K. H. W. J. Ten Tusscher and A. V. Panfilov, Wave propagation in excitable media with randomly distributed obstacles,, Multiscale Model. Simul., 3 (2005), 265. doi: 10.1137/030602654. 
[1] 
Shota Sato, Eiji Yanagida. Forward selfsimilar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems  A, 2010, 26 (1) : 313331. doi: 10.3934/dcds.2010.26.313 
[2] 
Shota Sato, Eiji Yanagida. Singular backward selfsimilar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems  S, 2011, 4 (4) : 897906. doi: 10.3934/dcdss.2011.4.897 
[3] 
Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to selfsimilar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems  A, 2008, 21 (3) : 703716. doi: 10.3934/dcds.2008.21.703 
[4] 
Marco Cannone, Grzegorz Karch. On selfsimilar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801808. doi: 10.3934/krm.2013.6.801 
[5] 
L. Olsen. Rates of convergence towards the boundary of a selfsimilar set. Discrete & Continuous Dynamical Systems  A, 2007, 19 (4) : 799811. doi: 10.3934/dcds.2007.19.799 
[6] 
Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191219. doi: 10.3934/cpaa.2002.1.191 
[7] 
JongShenq Guo. Blowup behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems  A, 2007, 18 (1) : 7184. doi: 10.3934/dcds.2007.18.71 
[8] 
Weronika Biedrzycka, Marta TyranKamińska. Selfsimilar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems  B, 2018, 23 (1) : 1327. doi: 10.3934/dcdsb.2018002 
[9] 
K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. selfsimilar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 5176. doi: 10.3934/cpaa.2002.1.51 
[10] 
Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous HamiltonJacobi equation with unusual free boundary. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 493519. doi: 10.3934/dcds.2010.26.493 
[11] 
Rostislav Grigorchuk, Volodymyr Nekrashevych. Selfsimilar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323370. doi: 10.3934/jmd.2007.1.323 
[12] 
Christoph Bandt, Helena PeÑa. Polynomial approximation of selfsimilar measures and the spectrum of the transfer operator. Discrete & Continuous Dynamical Systems  A, 2017, 37 (9) : 46114623. doi: 10.3934/dcds.2017198 
[13] 
Anna Chiara Lai, Paola Loreti. Selfsimilar control systems and applications to zygodactyl bird's foot. Networks & Heterogeneous Media, 2015, 10 (2) : 401419. doi: 10.3934/nhm.2015.10.401 
[14] 
D. G. Aronson. Selfsimilar focusing in porous media: An explicit calculation. Discrete & Continuous Dynamical Systems  B, 2012, 17 (6) : 16851691. doi: 10.3934/dcdsb.2012.17.1685 
[15] 
G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically selfsimilar dynamics. Conference Publications, 2005, 2005 (Special) : 131141. doi: 10.3934/proc.2005.2005.131 
[16] 
Qiaolin He. Numerical simulation and selfsimilar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems  B, 2010, 13 (1) : 101116. doi: 10.3934/dcdsb.2010.13.101 
[17] 
F. Berezovskaya, G. Karev. Bifurcations of selfsimilar solutions of the FokkerPlank equations. Conference Publications, 2005, 2005 (Special) : 9199. doi: 10.3934/proc.2005.2005.91 
[18] 
Hyungjin Huh. Selfsimilar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 5360. doi: 10.3934/eect.2018003 
[19] 
Kin Ming Hui. Existence of selfsimilar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems  A, 2019, 39 (2) : 863880. doi: 10.3934/dcds.2019036 
[20] 
Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601623. doi: 10.3934/krm.2013.6.601 
2018 Impact Factor: 0.871
Tools
Metrics
Other articles
by authors
[Back to Top]