Advanced Search
Article Contents
Article Contents

Oscillatory dynamics in a reaction-diffusion system in the presence of 0:1:2 resonance

Abstract Related Papers Cited by
  • Oscillatory dynamics in a reaction-diffusion system with spatially nonlocal effect under Neumann boundary conditions is studied. The system provides triply degenerate points for two spatially non-uniform modes and uniform one (zero mode). We focus our attention on the 0:1:2-mode interaction in the reaction-diffusion system. Using a normal form on the center manifold, we seek the equilibria and study the stability of them. Moreover, Hopf bifurcation phenomena is studied for each equilibrium which has a Hopf instability point. The numerical results to the chaotic dynamics are also shown.
    Mathematics Subject Classification: Primary: 35B10, 37G05; Secondary: 37D45.


    \begin{equation} \\ \end{equation}
  • [1]

    D. Armbruster, J. Guckenheimer and P. Holmes, Heteroclinic cycles and modulated travelling waves in system with O(2) symmetry, Physica, 29D (1988), 257-282.doi: 10.1016/0167-2789(88)90032-2.


    J. Carr, "Applications of Center Manifold Theory," Springer, 1981.


    J. Kaplan and J. Yorke, "Chaotic Behavior of Multi-dimensional Differential Equations and The Approximation of Fixed Points," Lecture Notes in Mathematics, 730, Springer.


    P. Frederickson, J. Kaplan, E. Yorke and J. Yorke, The Lyapunov dimension of strange attractors, J. DIff. Eqs., 49 (1983), 185-207.doi: 10.1016/0022-0396(83)90011-6.


    T. Ogawa, Degenerate Hopf instability in oscillatory reaction-diffusion equations, Discrete Contin. Dyn. Syst., (2007). Proceedings of the 6th AIMS International Conference, suppl., 784-793.


    M. R. E. Proctor and C. A. Jones, The interaction of two spatially resonant patterns in thermal convection, Part 1. Exact 1:2 resonance, J. Fluid Mech., 188 (1988), 301-335.doi: 10.1017/S0022112088000746.


    J. Porter and E. Knobloch, New type of complex dynamics in the 1:2 spatial resonance, Physica, 159D (2001), 125-154.doi: 10.1016/S0167-2789(01)00340-2.


    Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Springer, 1997.


    J. Liu, F. Yi and J. Wei, Multiple bifurcation analysis and spatiotemporal patterns in a 1-D Gierer-Meinhardt model of morphogenesis, IJBC, 20 (2010), 1007-1025.doi: 10.1142/S0218127410026289.


    I. Shimada and T. Nagashima, A numerical approach to Ergodic problem of dissipative dynamical systems, Prog. Theor. Phys., 61 (1979), 1605-1616.doi: 10.1143/PTP.61.1605.


    T. R. Smith, J. Moehlis and P. Holmes, Heteroclinic cycles and periodic orbits for the O(2)-equivariant 0:1:2 mode interaction, Physica, 211D (2005), 347-376.doi: 10.1016/j.physd.2005.09.002.


    Y. Morita and T. Ogawa, Stability and bifurcations of nonconstant solutions to a reaction-diffusion system with conservation mass, Nonlinearity, 23 (2010), 1387-1411.doi: 10.1088/0951-7715/23/6/007.


    A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. B, 237 (1952), 37-72.


    L. Yang, M. Dolnik, A. M. Zhabotinsky and I. R. Epstein, Pattern formation arising from interactions between Turing and wave instabilities, J. Chem. Phys., 117 (2002), 7257-7265.


    A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, Dynam. Report. Expositions Dynam. Systems (N.S.), 1, Springer, (1992), 125-163.


    M. J. Ward and J. Wei, Hopf Bifurcation of spike solutions for the shadow Gierer-Meinhardt model, Europ. J. Appl. Math., 14 (2003), 677-711.doi: 10.1017/S0956792503005278.

  • 加载中

Article Metrics

HTML views() PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint