December  2012, 7(4): 941-966. doi: 10.3934/nhm.2012.7.941

Entropy solutions of forward-backward parabolic equations with Devonshire free energy

1. 

Department of Mathematics "G. Castelnuovo", University of Rome "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy, Italy

Received  March 2012 Revised  October 2012 Published  December 2012

A class of quasilinear parabolic equations of forward-backward type $u_t=[\phi(u)]_{xx}$ in one space dimension is addressed, under assumptions on the nonlinear term $\phi$ which hold for a number of mathematical models in the theory of phase transitions. The notion of a three-phase solution to the Cauchy problem associated with the aforementioned equation is introduced. Then the time evolution of three-phase solutions is investigated, relying on a suitable entropy inequality satisfied by such a solution. In particular, it is proven that transitions between stable phases must satisfy certain admissibility conditions.
Citation: Flavia Smarrazzo, Alberto Tesei. Entropy solutions of forward-backward parabolic equations with Devonshire free energy. Networks & Heterogeneous Media, 2012, 7 (4) : 941-966. doi: 10.3934/nhm.2012.7.941
References:
[1]

G. I. Barenblatt, M. Bertsch, R. Dal Passo and M. Ughi, A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow,, SIAM J. Math. Anal., 24 (1993), 1414. doi: 10.1137/0524082. Google Scholar

[2]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci. 121, 121 (1996). doi: 10.1007/978-1-4612-4048-8. Google Scholar

[3]

L. T. T. Bui, F. Smarrazzo, and A. Tesei,, forthcoming., (). Google Scholar

[4]

L. C. Evans and M. Portilheiro, Irreversibility and hysteresis for a forward-backward diffusion equation,, Math. Mod. Meth. Appl. Sci., 14 (2004), 1599. doi: 10.1142/S0218202504003763. Google Scholar

[5]

O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-linear Equations of Parabolic Type,", Amer. Math. Soc., (1991). Google Scholar

[6]

C. Mascia, A. Terracina and A. Tesei, Evolution of stable phases in forward-backward parabolic equations,, in:, 47-2 (2007), 451. Google Scholar

[7]

C. Mascia, A. Terracina and A. Tesei, Two-phase entropy solutions of a forward-backward parabolic equation,, Arch. Rational Mech. Anal., 194 (2009), 887. doi: 10.1007/s00205-008-0185-6. Google Scholar

[8]

A. Novick-Cohen and R. L. Pego, Stable patterns in a viscous diffusion equation,, Trans. Amer. Math. Soc., 324 (1991), 331. doi: 10.2307/2001511. Google Scholar

[9]

V. Padrón, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations,, Comm. Partial Differential Equations, 23 (1998), 457. doi: 10.1080/03605309808821353. Google Scholar

[10]

P. Perona and J. Malik, Scale space and edge detection using anisotropic diffusion,, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629. Google Scholar

[11]

P. I. Plotnikov, Passing to the limit with respect to viscosity in an equation with variable parabolicity direction,, Diff. Equ., 30 (1994), 614. Google Scholar

[12]

D. Serre, "Systems of Conservation Laws, Vol. 1: Hyperbolicity, Entropies, Shock Waves,", Cambridge University Press, (1999). doi: 10.1017/CBO9780511612374. Google Scholar

[13]

F. Smarrazzo and A. Terracina, Local existence and uniqueness of two-phase entropy solutions,, Discrete Contin. Dyn. Syst. (to appear)., (). Google Scholar

[14]

A. Terracina, Qualitative behaviour of the two-phase entropy solution of a forward-backward parabolic equation,, SIAM J. Math. Anal., 43 (2011), 228. doi: 10.1137/090778833. Google Scholar

[15]

M. Valadier, A course on Young measures,, Rend. Ist. Mat. Univ. Trieste, 26 (1995), 349. Google Scholar

show all references

References:
[1]

G. I. Barenblatt, M. Bertsch, R. Dal Passo and M. Ughi, A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow,, SIAM J. Math. Anal., 24 (1993), 1414. doi: 10.1137/0524082. Google Scholar

[2]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci. 121, 121 (1996). doi: 10.1007/978-1-4612-4048-8. Google Scholar

[3]

L. T. T. Bui, F. Smarrazzo, and A. Tesei,, forthcoming., (). Google Scholar

[4]

L. C. Evans and M. Portilheiro, Irreversibility and hysteresis for a forward-backward diffusion equation,, Math. Mod. Meth. Appl. Sci., 14 (2004), 1599. doi: 10.1142/S0218202504003763. Google Scholar

[5]

O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-linear Equations of Parabolic Type,", Amer. Math. Soc., (1991). Google Scholar

[6]

C. Mascia, A. Terracina and A. Tesei, Evolution of stable phases in forward-backward parabolic equations,, in:, 47-2 (2007), 451. Google Scholar

[7]

C. Mascia, A. Terracina and A. Tesei, Two-phase entropy solutions of a forward-backward parabolic equation,, Arch. Rational Mech. Anal., 194 (2009), 887. doi: 10.1007/s00205-008-0185-6. Google Scholar

[8]

A. Novick-Cohen and R. L. Pego, Stable patterns in a viscous diffusion equation,, Trans. Amer. Math. Soc., 324 (1991), 331. doi: 10.2307/2001511. Google Scholar

[9]

V. Padrón, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations,, Comm. Partial Differential Equations, 23 (1998), 457. doi: 10.1080/03605309808821353. Google Scholar

[10]

P. Perona and J. Malik, Scale space and edge detection using anisotropic diffusion,, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629. Google Scholar

[11]

P. I. Plotnikov, Passing to the limit with respect to viscosity in an equation with variable parabolicity direction,, Diff. Equ., 30 (1994), 614. Google Scholar

[12]

D. Serre, "Systems of Conservation Laws, Vol. 1: Hyperbolicity, Entropies, Shock Waves,", Cambridge University Press, (1999). doi: 10.1017/CBO9780511612374. Google Scholar

[13]

F. Smarrazzo and A. Terracina, Local existence and uniqueness of two-phase entropy solutions,, Discrete Contin. Dyn. Syst. (to appear)., (). Google Scholar

[14]

A. Terracina, Qualitative behaviour of the two-phase entropy solution of a forward-backward parabolic equation,, SIAM J. Math. Anal., 43 (2011), 228. doi: 10.1137/090778833. Google Scholar

[15]

M. Valadier, A course on Young measures,, Rend. Ist. Mat. Univ. Trieste, 26 (1995), 349. Google Scholar

[1]

Fabio Paronetto. Elliptic approximation of forward-backward parabolic equations. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1017-1036. doi: 10.3934/cpaa.2020047

[2]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[3]

Flavia Smarrazzo, Andrea Terracina. Sobolev approximation for two-phase solutions of forward-backward parabolic problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1657-1697. doi: 10.3934/dcds.2013.33.1657

[4]

Jiongmin Yong. Forward-backward evolution equations and applications. Mathematical Control & Related Fields, 2016, 6 (4) : 653-704. doi: 10.3934/mcrf.2016019

[5]

G. Bellettini, Giorgio Fusco, Nicola Guglielmi. A concept of solution and numerical experiments for forward-backward diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 783-842. doi: 10.3934/dcds.2006.16.783

[6]

Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115

[7]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control & Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613

[8]

Lianzhang Bao, Zhengfang Zhou. Traveling wave in backward and forward parabolic equations from population dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1507-1522. doi: 10.3934/dcdsb.2014.19.1507

[9]

Xiao Ding, Deren Han. A modification of the forward-backward splitting method for maximal monotone mappings. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 295-307. doi: 10.3934/naco.2013.3.295

[10]

Jie Xiong, Shuaiqi Zhang, Yi Zhuang. A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance. Mathematical Control & Related Fields, 2019, 9 (2) : 257-276. doi: 10.3934/mcrf.2019013

[11]

José A. Carrillo, Jean Dolbeault, Ivan Gentil, Ansgar Jüngel. Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1027-1050. doi: 10.3934/dcdsb.2006.6.1027

[12]

Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems & Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002

[13]

Elena Bonetti, Pierluigi Colli, Mauro Fabrizio, Gianni Gilardi. Modelling and long-time behaviour for phase transitions with entropy balance and thermal memory conductivity. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1001-1026. doi: 10.3934/dcdsb.2006.6.1001

[14]

José Luiz Boldrini, Luís H. de Miranda, Gabriela Planas. On singular Navier-Stokes equations and irreversible phase transitions. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2055-2078. doi: 10.3934/cpaa.2012.11.2055

[15]

Haiyang Wang, Jianfeng Zhang. Forward backward SDEs in weak formulation. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1021-1049. doi: 10.3934/mcrf.2018044

[16]

Matteo Novaga, Enrico Valdinoci. The geometry of mesoscopic phase transition interfaces. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 777-798. doi: 10.3934/dcds.2007.19.777

[17]

Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

[18]

Peng Gao. Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their applications. Evolution Equations & Control Theory, 2018, 7 (3) : 465-499. doi: 10.3934/eect.2018023

[19]

Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799

[20]

Yanqing Wang. A semidiscrete Galerkin scheme for backward stochastic parabolic differential equations. Mathematical Control & Related Fields, 2016, 6 (3) : 489-515. doi: 10.3934/mcrf.2016013

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]