March  2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115

Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes

1. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States

2. 

Mathematical Division, B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Lenin Ave., 61103 Kharkiv, Ukraine

Received  January 2012 Revised  May 2012 Published  April 2013

We consider a homogenization problem for the magnetic Ginzburg-Landau functional in domains with a large number of small holes. We establish a scaling relation between sizes of holes and the magnitude of the external magnetic field when the multiple vortices pinned by holes appear in nested subdomains and their homogenized density is described by a hierarchy of variational problems. This stands in sharp contrast with homogeneous superconductors, where all vortices are known to be simple. The proof is based on the $\Gamma$-convergence approach applied to a coupled continuum/discrete variational problem: continuum in the induced magnetic field and discrete in the unknown finite (quantized) values of multiplicity of vortices pinned by holes.
Citation: Leonid Berlyand, Volodymyr Rybalko. Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8 (1) : 115-130. doi: 10.3934/nhm.2013.8.115
References:
[1]

A. Aftalion, E. Sandier and S. Serfaty, Pinning phenomena in the Ginzburg-Landau model of superconductivity, J. Math. Pures Appl. (9), 80 (2001), 339-372. doi: 10.1016/S0021-7824(00)01180-6.

[2]

S. Alama and L. Bronsard, Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions, J. Math. Phys., 46 (2005), 39 pp. doi: 10.1063/1.2010354.

[3]

S. Alama and L. Bronsard, Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains, Comm. Pure Appl. Math., 59 (2006), 36-70. doi: 10.1002/cpa.20086.

[4]

H. Aydi and A. Kachmar, Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II, Commun. Pure Appl. Anal., 8 (2009), 977-998. doi: 10.3934/cpaa.2009.8.977.

[5]

E. J. Balder, "Lectures on Young Measures," Cah. de Ceremade, 1995.

[6]

G. R. Berdiyorov, M. V. Milosević and F. M. Peeters, Novel commensurability effects in superconducting films with antidot arrays, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.207001.

[7]

M. Dos Santos and O. Misiats, Ginzburg-Landau model with small pinning domains, Netw. Heterog. Media, 6 (2011), 715-753. doi: 10.3934/nhm.2011.6.715.

[8]

M. Dos Santos, P. Mironescu and O. Misiats, The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part I : The zero degree case, Comm. Contemp. Math., 13 (2011), 885-914. doi: 10.1142/S021919971100449X.

[9]

M. Dos Santos, The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part II: The non-zero degree case, preprint.

[10]

I. Ekeland and R. Temam, "Analyse Convexe et Problemes Variationnels," (French) Collection Etudes Mathematiques. Dunod; Gauthier-Villars, Paris-Brussels-Montreal, Que., 1974.

[11]

A. Kachmar, Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint, ESAIM Control Optim. Calc. Var., 16 (2010), 545-580. doi: 10.1051/cocv/2009009.

[12]

L. Lassoued and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint, J. Anal. Math., 77 (1999), 1-26. doi: 10.1007/BF02791255.

[13]

P. Pedregal, "Parametrized Measures and Variational Principles," Birkhauser, 1997. doi: 10.1007/978-3-0348-8886-8.

[14]

E. Sandier and S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, Annales IHP, Analyse Non Linéaire, 17 (2000), 119-145. doi: 10.1016/S0294-1449(99)00106-7.

[15]

M. Valadier, Young measures, Methods of Nonconvex Analysis, Lecture Notes Math., Springer, (1990), 152-188. doi: 10.1007/BFb0084935.

show all references

References:
[1]

A. Aftalion, E. Sandier and S. Serfaty, Pinning phenomena in the Ginzburg-Landau model of superconductivity, J. Math. Pures Appl. (9), 80 (2001), 339-372. doi: 10.1016/S0021-7824(00)01180-6.

[2]

S. Alama and L. Bronsard, Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions, J. Math. Phys., 46 (2005), 39 pp. doi: 10.1063/1.2010354.

[3]

S. Alama and L. Bronsard, Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains, Comm. Pure Appl. Math., 59 (2006), 36-70. doi: 10.1002/cpa.20086.

[4]

H. Aydi and A. Kachmar, Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II, Commun. Pure Appl. Anal., 8 (2009), 977-998. doi: 10.3934/cpaa.2009.8.977.

[5]

E. J. Balder, "Lectures on Young Measures," Cah. de Ceremade, 1995.

[6]

G. R. Berdiyorov, M. V. Milosević and F. M. Peeters, Novel commensurability effects in superconducting films with antidot arrays, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.207001.

[7]

M. Dos Santos and O. Misiats, Ginzburg-Landau model with small pinning domains, Netw. Heterog. Media, 6 (2011), 715-753. doi: 10.3934/nhm.2011.6.715.

[8]

M. Dos Santos, P. Mironescu and O. Misiats, The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part I : The zero degree case, Comm. Contemp. Math., 13 (2011), 885-914. doi: 10.1142/S021919971100449X.

[9]

M. Dos Santos, The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part II: The non-zero degree case, preprint.

[10]

I. Ekeland and R. Temam, "Analyse Convexe et Problemes Variationnels," (French) Collection Etudes Mathematiques. Dunod; Gauthier-Villars, Paris-Brussels-Montreal, Que., 1974.

[11]

A. Kachmar, Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint, ESAIM Control Optim. Calc. Var., 16 (2010), 545-580. doi: 10.1051/cocv/2009009.

[12]

L. Lassoued and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint, J. Anal. Math., 77 (1999), 1-26. doi: 10.1007/BF02791255.

[13]

P. Pedregal, "Parametrized Measures and Variational Principles," Birkhauser, 1997. doi: 10.1007/978-3-0348-8886-8.

[14]

E. Sandier and S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, Annales IHP, Analyse Non Linéaire, 17 (2000), 119-145. doi: 10.1016/S0294-1449(99)00106-7.

[15]

M. Valadier, Young measures, Methods of Nonconvex Analysis, Lecture Notes Math., Springer, (1990), 152-188. doi: 10.1007/BFb0084935.

[1]

Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks and Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715

[2]

Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121

[3]

Leonid Berlyand, Volodymyr Rybalko, Nung Kwan Yip. Renormalized Ginzburg-Landau energy and location of near boundary vortices. Networks and Heterogeneous Media, 2012, 7 (1) : 179-196. doi: 10.3934/nhm.2012.7.179

[4]

Ko-Shin Chen, Peter Sternberg. Dynamics of Ginzburg-Landau and Gross-Pitaevskii vortices on manifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1905-1931. doi: 10.3934/dcds.2014.34.1905

[5]

Giacomo Canevari, Antonio Segatti. Motion of vortices for the extrinsic Ginzburg-Landau flow for vector fields on surfaces. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2087-2116. doi: 10.3934/dcdss.2022116

[6]

Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461

[7]

Gregory A. Chechkin, Vladimir V. Chepyzhov, Leonid S. Pankratov. Homogenization of trajectory attractors of Ginzburg-Landau equations with randomly oscillating terms. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1133-1154. doi: 10.3934/dcdsb.2018145

[8]

Hassen Aydi, Ayman Kachmar. Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II. Communications on Pure and Applied Analysis, 2009, 8 (3) : 977-998. doi: 10.3934/cpaa.2009.8.977

[9]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[10]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[11]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[12]

Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 835-851. doi: 10.3934/dcdss.2020048

[13]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[14]

Satoshi Kosugi, Yoshihisa Morita. Phase pattern in a Ginzburg-Landau model with a discontinuous coefficient in a ring. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 149-168. doi: 10.3934/dcds.2006.14.149

[15]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

[16]

Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173

[17]

Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280

[18]

N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476

[19]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure and Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[20]

Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]