March  2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115

Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes

1. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States

2. 

Mathematical Division, B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Lenin Ave., 61103 Kharkiv, Ukraine

Received  January 2012 Revised  May 2012 Published  April 2013

We consider a homogenization problem for the magnetic Ginzburg-Landau functional in domains with a large number of small holes. We establish a scaling relation between sizes of holes and the magnitude of the external magnetic field when the multiple vortices pinned by holes appear in nested subdomains and their homogenized density is described by a hierarchy of variational problems. This stands in sharp contrast with homogeneous superconductors, where all vortices are known to be simple. The proof is based on the $\Gamma$-convergence approach applied to a coupled continuum/discrete variational problem: continuum in the induced magnetic field and discrete in the unknown finite (quantized) values of multiplicity of vortices pinned by holes.
Citation: Leonid Berlyand, Volodymyr Rybalko. Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks & Heterogeneous Media, 2013, 8 (1) : 115-130. doi: 10.3934/nhm.2013.8.115
References:
[1]

A. Aftalion, E. Sandier and S. Serfaty, Pinning phenomena in the Ginzburg-Landau model of superconductivity,, J. Math. Pures Appl. (9), 80 (2001), 339.  doi: 10.1016/S0021-7824(00)01180-6.  Google Scholar

[2]

S. Alama and L. Bronsard, Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions,, J. Math. Phys., 46 (2005).  doi: 10.1063/1.2010354.  Google Scholar

[3]

S. Alama and L. Bronsard, Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains,, Comm. Pure Appl. Math., 59 (2006), 36.  doi: 10.1002/cpa.20086.  Google Scholar

[4]

H. Aydi and A. Kachmar, Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II,, Commun. Pure Appl. Anal., 8 (2009), 977.  doi: 10.3934/cpaa.2009.8.977.  Google Scholar

[5]

E. J. Balder, "Lectures on Young Measures,", Cah. de Ceremade, (1995).   Google Scholar

[6]

G. R. Berdiyorov, M. V. Milosević and F. M. Peeters, Novel commensurability effects in superconducting films with antidot arrays,, Phys. Rev. Lett., 96 (2006).  doi: 10.1103/PhysRevLett.96.207001.  Google Scholar

[7]

M. Dos Santos and O. Misiats, Ginzburg-Landau model with small pinning domains,, Netw. Heterog. Media, 6 (2011), 715.  doi: 10.3934/nhm.2011.6.715.  Google Scholar

[8]

M. Dos Santos, P. Mironescu and O. Misiats, The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part I : The zero degree case,, Comm. Contemp. Math., 13 (2011), 885.  doi: 10.1142/S021919971100449X.  Google Scholar

[9]

M. Dos Santos, The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part II: The non-zero degree case,, preprint., ().   Google Scholar

[10]

I. Ekeland and R. Temam, "Analyse Convexe et Problemes Variationnels,", (French) Collection Etudes Mathematiques. Dunod; Gauthier-Villars, (1974).   Google Scholar

[11]

A. Kachmar, Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint,, ESAIM Control Optim. Calc. Var., 16 (2010), 545.  doi: 10.1051/cocv/2009009.  Google Scholar

[12]

L. Lassoued and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint,, J. Anal. Math., 77 (1999), 1.  doi: 10.1007/BF02791255.  Google Scholar

[13]

P. Pedregal, "Parametrized Measures and Variational Principles,", Birkhauser, (1997).  doi: 10.1007/978-3-0348-8886-8.  Google Scholar

[14]

E. Sandier and S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field,, Annales IHP, 17 (2000), 119.  doi: 10.1016/S0294-1449(99)00106-7.  Google Scholar

[15]

M. Valadier, Young measures,, Methods of Nonconvex Analysis, (1990), 152.  doi: 10.1007/BFb0084935.  Google Scholar

show all references

References:
[1]

A. Aftalion, E. Sandier and S. Serfaty, Pinning phenomena in the Ginzburg-Landau model of superconductivity,, J. Math. Pures Appl. (9), 80 (2001), 339.  doi: 10.1016/S0021-7824(00)01180-6.  Google Scholar

[2]

S. Alama and L. Bronsard, Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions,, J. Math. Phys., 46 (2005).  doi: 10.1063/1.2010354.  Google Scholar

[3]

S. Alama and L. Bronsard, Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains,, Comm. Pure Appl. Math., 59 (2006), 36.  doi: 10.1002/cpa.20086.  Google Scholar

[4]

H. Aydi and A. Kachmar, Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II,, Commun. Pure Appl. Anal., 8 (2009), 977.  doi: 10.3934/cpaa.2009.8.977.  Google Scholar

[5]

E. J. Balder, "Lectures on Young Measures,", Cah. de Ceremade, (1995).   Google Scholar

[6]

G. R. Berdiyorov, M. V. Milosević and F. M. Peeters, Novel commensurability effects in superconducting films with antidot arrays,, Phys. Rev. Lett., 96 (2006).  doi: 10.1103/PhysRevLett.96.207001.  Google Scholar

[7]

M. Dos Santos and O. Misiats, Ginzburg-Landau model with small pinning domains,, Netw. Heterog. Media, 6 (2011), 715.  doi: 10.3934/nhm.2011.6.715.  Google Scholar

[8]

M. Dos Santos, P. Mironescu and O. Misiats, The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part I : The zero degree case,, Comm. Contemp. Math., 13 (2011), 885.  doi: 10.1142/S021919971100449X.  Google Scholar

[9]

M. Dos Santos, The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part II: The non-zero degree case,, preprint., ().   Google Scholar

[10]

I. Ekeland and R. Temam, "Analyse Convexe et Problemes Variationnels,", (French) Collection Etudes Mathematiques. Dunod; Gauthier-Villars, (1974).   Google Scholar

[11]

A. Kachmar, Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint,, ESAIM Control Optim. Calc. Var., 16 (2010), 545.  doi: 10.1051/cocv/2009009.  Google Scholar

[12]

L. Lassoued and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint,, J. Anal. Math., 77 (1999), 1.  doi: 10.1007/BF02791255.  Google Scholar

[13]

P. Pedregal, "Parametrized Measures and Variational Principles,", Birkhauser, (1997).  doi: 10.1007/978-3-0348-8886-8.  Google Scholar

[14]

E. Sandier and S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field,, Annales IHP, 17 (2000), 119.  doi: 10.1016/S0294-1449(99)00106-7.  Google Scholar

[15]

M. Valadier, Young measures,, Methods of Nonconvex Analysis, (1990), 152.  doi: 10.1007/BFb0084935.  Google Scholar

[1]

Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks & Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715

[2]

Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121

[3]

Leonid Berlyand, Volodymyr Rybalko, Nung Kwan Yip. Renormalized Ginzburg-Landau energy and location of near boundary vortices. Networks & Heterogeneous Media, 2012, 7 (1) : 179-196. doi: 10.3934/nhm.2012.7.179

[4]

Ko-Shin Chen, Peter Sternberg. Dynamics of Ginzburg-Landau and Gross-Pitaevskii vortices on manifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1905-1931. doi: 10.3934/dcds.2014.34.1905

[5]

Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks & Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461

[6]

Gregory A. Chechkin, Vladimir V. Chepyzhov, Leonid S. Pankratov. Homogenization of trajectory attractors of Ginzburg-Landau equations with randomly oscillating terms. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1133-1154. doi: 10.3934/dcdsb.2018145

[7]

Hassen Aydi, Ayman Kachmar. Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II. Communications on Pure & Applied Analysis, 2009, 8 (3) : 977-998. doi: 10.3934/cpaa.2009.8.977

[8]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[9]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[10]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[11]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[12]

Satoshi Kosugi, Yoshihisa Morita. Phase pattern in a Ginzburg-Landau model with a discontinuous coefficient in a ring. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 149-168. doi: 10.3934/dcds.2006.14.149

[13]

Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173

[14]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

[15]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[16]

Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280

[17]

N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476

[18]

Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754

[19]

Alessia Berti, Valeria Berti, Ivana Bochicchio. Global and exponential attractors for a Ginzburg-Landau model of superfluidity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 247-271. doi: 10.3934/dcdss.2011.4.247

[20]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]