March  2013, 8(1): 131-147. doi: 10.3934/nhm.2013.8.131

Modeling contact inhibition of growth: Traveling waves

1. 

Istituto per le Applicazioni del Calcolo Mauro Picone, CNR, University of Rome Tor Vergata, Via dei Taurini 19, 00185 Rome, Italy

2. 

Meiji Institute of Advanced Mathematical Sciences, Meiji University, 1-1-1, Higashi-mita, Tama-ku, Kawasaki, 214-8571

3. 

Department of Basic Sciences, Kyushu Institute of Technology, 1-1, Sensui-cho, Tobata, Kitakyuchu, 804-8550, Japan

Received  January 2012 Revised  October 2012 Published  April 2013

We consider a simplified 1-dimensional PDE-model describing the effect of contact inhibition in growth processes of normal and abnormal cells. Varying the value of a significant parameter, numerical tests suggest two different types of contact inhibition between the cell populations: the two populations move with constant velocity and exhibit spatial segregation, or they stop to move and regions of coexistence are formed. In order to understand the different mechanisms, we prove that there exists a segregated traveling wave solution for a unique wave speed, and we present numerical results on the ``stability" of the segregated waves. We conjecture the existence of a non-segregated standing wave for certain parameter values.
Citation: Michiel Bertsch, Masayasu Mimura, Tohru Wakasa. Modeling contact inhibition of growth: Traveling waves. Networks & Heterogeneous Media, 2013, 8 (1) : 131-147. doi: 10.3934/nhm.2013.8.131
References:
[1]

D. G. Aronson, Density-dependent interaction systems,, in, (1980), 161. Google Scholar

[2]

M. Bertsch, R. Dal Passo and M. Mimura, A free boundary problem arising in a simplified tumour growth model of contact inhibition,, Interfaces and Free Boundaries, 12 (2010), 235. doi: 10.4171/IFB/233. Google Scholar

[3]

M. Bertsch, D. Hilhorst, H. Izuhara and M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth,, Differ. Equ. Appl., 4 (2012), 137. doi: 10.7153/dea-04-09. Google Scholar

[4]

M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, Singular limit problem of a nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth,, in preparation (2013)., (2013). doi: 10.7153/dea-04-09. Google Scholar

[5]

M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, Traveling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth,, in preparation (2013)., (2013). Google Scholar

[6]

M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, in, preparation (2013)., (2013). Google Scholar

[7]

Z. Biró, Stability of traveling waves for degenerate reaction-diffusion equations of KPP-type,, Adv. Nonlinear Stud., 2 (2002), 357. Google Scholar

[8]

M. A. J. Chaplain, L. Graziano and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour deveropment,, Math. Med. Bio., 23 (2006), 197. doi: 10.1093/imammb/dql009. Google Scholar

[9]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill, (1955). Google Scholar

[10]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 335. doi: 10.1111/j.1469-1809.1937.tb02153.x. Google Scholar

[11]

G. Garcia-Ramos, F. Sanches-Garduño and P. K. Maini, Dispersal can sharpen parapatric boundaries on a spatially varying environment,, Ecology, 81 (2000), 749. Google Scholar

[12]

R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion,, Cancer Res., 56 (1996), 5745. Google Scholar

[13]

B. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection Reaction,", Birkhäuser Verlag, (2004). doi: 10.1007/978-3-0348-7964-4. Google Scholar

[14]

D. Hilhorst, R. Kersner, E. Logak and M. Mimura, Interface dynamics of the Fisher equation with degenerate diffusion,, J. Differential Equations, 244 (2008), 2870. doi: 10.1016/j.jde.2008.02.018. Google Scholar

[15]

S. Kamin and P. Rosenau, Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation,, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Ser. 9 Mat. Appl., 15 (2004), 271. Google Scholar

[16]

N. S. Kolmogorov, N. Petrovsky and I. G. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière e son application a un problème biologique, (Russian),, Bull. Univ. État Moscou, 1 (1937), 1. Google Scholar

[17]

G. S. Medvedev, K. Ono and P. Holmes, Traveling wave solutions of the degenerate Kolmogorov-Petrovsky-Piskunov equation,, European J. Appl. Math., 14 (2003), 343. doi: 10.1017/S0956792503005102. Google Scholar

[18]

J. A. Sherratt, Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations,, Proc. R. Soc. Lond. A, 456 (2000), 2365. doi: 10.1098/rspa.2000.0616. Google Scholar

[19]

F. Sanches-Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations,, J. Differential Equations, 117 (1995), 281. doi: 10.1006/jdeq.1995.1055. Google Scholar

[20]

Y. Tsukatani, K. Suzuki and K. Takahashi, Loss of density-dependent growth inhibition and dissociation of $\alpha$-catenin from E-cadherin,, J. Cell. Physiol., 173 (1997), 54. Google Scholar

show all references

References:
[1]

D. G. Aronson, Density-dependent interaction systems,, in, (1980), 161. Google Scholar

[2]

M. Bertsch, R. Dal Passo and M. Mimura, A free boundary problem arising in a simplified tumour growth model of contact inhibition,, Interfaces and Free Boundaries, 12 (2010), 235. doi: 10.4171/IFB/233. Google Scholar

[3]

M. Bertsch, D. Hilhorst, H. Izuhara and M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth,, Differ. Equ. Appl., 4 (2012), 137. doi: 10.7153/dea-04-09. Google Scholar

[4]

M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, Singular limit problem of a nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth,, in preparation (2013)., (2013). doi: 10.7153/dea-04-09. Google Scholar

[5]

M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, Traveling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth,, in preparation (2013)., (2013). Google Scholar

[6]

M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, in, preparation (2013)., (2013). Google Scholar

[7]

Z. Biró, Stability of traveling waves for degenerate reaction-diffusion equations of KPP-type,, Adv. Nonlinear Stud., 2 (2002), 357. Google Scholar

[8]

M. A. J. Chaplain, L. Graziano and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour deveropment,, Math. Med. Bio., 23 (2006), 197. doi: 10.1093/imammb/dql009. Google Scholar

[9]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill, (1955). Google Scholar

[10]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 335. doi: 10.1111/j.1469-1809.1937.tb02153.x. Google Scholar

[11]

G. Garcia-Ramos, F. Sanches-Garduño and P. K. Maini, Dispersal can sharpen parapatric boundaries on a spatially varying environment,, Ecology, 81 (2000), 749. Google Scholar

[12]

R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion,, Cancer Res., 56 (1996), 5745. Google Scholar

[13]

B. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection Reaction,", Birkhäuser Verlag, (2004). doi: 10.1007/978-3-0348-7964-4. Google Scholar

[14]

D. Hilhorst, R. Kersner, E. Logak and M. Mimura, Interface dynamics of the Fisher equation with degenerate diffusion,, J. Differential Equations, 244 (2008), 2870. doi: 10.1016/j.jde.2008.02.018. Google Scholar

[15]

S. Kamin and P. Rosenau, Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation,, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Ser. 9 Mat. Appl., 15 (2004), 271. Google Scholar

[16]

N. S. Kolmogorov, N. Petrovsky and I. G. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière e son application a un problème biologique, (Russian),, Bull. Univ. État Moscou, 1 (1937), 1. Google Scholar

[17]

G. S. Medvedev, K. Ono and P. Holmes, Traveling wave solutions of the degenerate Kolmogorov-Petrovsky-Piskunov equation,, European J. Appl. Math., 14 (2003), 343. doi: 10.1017/S0956792503005102. Google Scholar

[18]

J. A. Sherratt, Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations,, Proc. R. Soc. Lond. A, 456 (2000), 2365. doi: 10.1098/rspa.2000.0616. Google Scholar

[19]

F. Sanches-Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations,, J. Differential Equations, 117 (1995), 281. doi: 10.1006/jdeq.1995.1055. Google Scholar

[20]

Y. Tsukatani, K. Suzuki and K. Takahashi, Loss of density-dependent growth inhibition and dissociation of $\alpha$-catenin from E-cadherin,, J. Cell. Physiol., 173 (1997), 54. Google Scholar

[1]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[2]

Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar. The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 547-559. doi: 10.3934/mbe.2009.6.547

[3]

Lianzhang Bao, Zhengfang Zhou. Traveling wave in backward and forward parabolic equations from population dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1507-1522. doi: 10.3934/dcdsb.2014.19.1507

[4]

Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129

[5]

Harunori Monobe, Hirokazu Ninomiya. Traveling wave solutions with convex domains for a free boundary problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 905-914. doi: 10.3934/dcds.2017037

[6]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[7]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[8]

Jian-Guo Liu, Min Tang, Li Wang, Zhennan Zhou. Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3011-3035. doi: 10.3934/dcdsb.2018297

[9]

J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263

[10]

Zhaosheng Feng, Goong Chen. Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 763-780. doi: 10.3934/dcds.2009.24.763

[11]

Pao-Liu Chow. Stochastic PDE model for spatial population growth in random environments. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 55-65. doi: 10.3934/dcdsb.2016.21.55

[12]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997

[13]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[14]

Ronald Mickens, Kale Oyedeji. Traveling wave solutions to modified Burgers and diffusionless Fisher PDE's. Evolution Equations & Control Theory, 2019, 8 (1) : 139-147. doi: 10.3934/eect.2019008

[15]

Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152

[16]

Peng Feng, Zhengfang Zhou. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1145-1165. doi: 10.3934/cpaa.2007.6.1145

[17]

Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455

[18]

Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717

[19]

Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105

[20]

Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]