-
Previous Article
Archimedean copula and contagion modeling in epidemiology
- NHM Home
- This Issue
-
Next Article
Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes
Modeling contact inhibition of growth: Traveling waves
1. | Istituto per le Applicazioni del Calcolo Mauro Picone, CNR, University of Rome Tor Vergata, Via dei Taurini 19, 00185 Rome, Italy |
2. | Meiji Institute of Advanced Mathematical Sciences, Meiji University, 1-1-1, Higashi-mita, Tama-ku, Kawasaki, 214-8571 |
3. | Department of Basic Sciences, Kyushu Institute of Technology, 1-1, Sensui-cho, Tobata, Kitakyuchu, 804-8550, Japan |
References:
[1] |
D. G. Aronson, Density-dependent interaction systems,, in, (1980), 161.
|
[2] |
M. Bertsch, R. Dal Passo and M. Mimura, A free boundary problem arising in a simplified tumour growth model of contact inhibition,, Interfaces and Free Boundaries, 12 (2010), 235.
doi: 10.4171/IFB/233. |
[3] |
M. Bertsch, D. Hilhorst, H. Izuhara and M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth,, Differ. Equ. Appl., 4 (2012), 137.
doi: 10.7153/dea-04-09. |
[4] |
M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, Singular limit problem of a nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth,, in preparation (2013)., (2013).
doi: 10.7153/dea-04-09. |
[5] |
M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, Traveling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth,, in preparation (2013)., (2013). Google Scholar |
[6] |
M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, in, preparation (2013)., (2013). Google Scholar |
[7] |
Z. Biró, Stability of traveling waves for degenerate reaction-diffusion equations of KPP-type,, Adv. Nonlinear Stud., 2 (2002), 357.
|
[8] |
M. A. J. Chaplain, L. Graziano and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour deveropment,, Math. Med. Bio., 23 (2006), 197.
doi: 10.1093/imammb/dql009. |
[9] |
E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill, (1955).
|
[10] |
R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 335.
doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[11] |
G. Garcia-Ramos, F. Sanches-Garduño and P. K. Maini, Dispersal can sharpen parapatric boundaries on a spatially varying environment,, Ecology, 81 (2000), 749. Google Scholar |
[12] |
R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion,, Cancer Res., 56 (1996), 5745. Google Scholar |
[13] |
B. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection Reaction,", Birkhäuser Verlag, (2004).
doi: 10.1007/978-3-0348-7964-4. |
[14] |
D. Hilhorst, R. Kersner, E. Logak and M. Mimura, Interface dynamics of the Fisher equation with degenerate diffusion,, J. Differential Equations, 244 (2008), 2870.
doi: 10.1016/j.jde.2008.02.018. |
[15] |
S. Kamin and P. Rosenau, Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation,, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Ser. 9 Mat. Appl., 15 (2004), 271.
|
[16] |
N. S. Kolmogorov, N. Petrovsky and I. G. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière e son application a un problème biologique, (Russian),, Bull. Univ. État Moscou, 1 (1937), 1. Google Scholar |
[17] |
G. S. Medvedev, K. Ono and P. Holmes, Traveling wave solutions of the degenerate Kolmogorov-Petrovsky-Piskunov equation,, European J. Appl. Math., 14 (2003), 343.
doi: 10.1017/S0956792503005102. |
[18] |
J. A. Sherratt, Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations,, Proc. R. Soc. Lond. A, 456 (2000), 2365.
doi: 10.1098/rspa.2000.0616. |
[19] |
F. Sanches-Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations,, J. Differential Equations, 117 (1995), 281.
doi: 10.1006/jdeq.1995.1055. |
[20] |
Y. Tsukatani, K. Suzuki and K. Takahashi, Loss of density-dependent growth inhibition and dissociation of $\alpha$-catenin from E-cadherin,, J. Cell. Physiol., 173 (1997), 54. Google Scholar |
show all references
References:
[1] |
D. G. Aronson, Density-dependent interaction systems,, in, (1980), 161.
|
[2] |
M. Bertsch, R. Dal Passo and M. Mimura, A free boundary problem arising in a simplified tumour growth model of contact inhibition,, Interfaces and Free Boundaries, 12 (2010), 235.
doi: 10.4171/IFB/233. |
[3] |
M. Bertsch, D. Hilhorst, H. Izuhara and M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth,, Differ. Equ. Appl., 4 (2012), 137.
doi: 10.7153/dea-04-09. |
[4] |
M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, Singular limit problem of a nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth,, in preparation (2013)., (2013).
doi: 10.7153/dea-04-09. |
[5] |
M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, Traveling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth,, in preparation (2013)., (2013). Google Scholar |
[6] |
M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, in, preparation (2013)., (2013). Google Scholar |
[7] |
Z. Biró, Stability of traveling waves for degenerate reaction-diffusion equations of KPP-type,, Adv. Nonlinear Stud., 2 (2002), 357.
|
[8] |
M. A. J. Chaplain, L. Graziano and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour deveropment,, Math. Med. Bio., 23 (2006), 197.
doi: 10.1093/imammb/dql009. |
[9] |
E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill, (1955).
|
[10] |
R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 335.
doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[11] |
G. Garcia-Ramos, F. Sanches-Garduño and P. K. Maini, Dispersal can sharpen parapatric boundaries on a spatially varying environment,, Ecology, 81 (2000), 749. Google Scholar |
[12] |
R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion,, Cancer Res., 56 (1996), 5745. Google Scholar |
[13] |
B. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection Reaction,", Birkhäuser Verlag, (2004).
doi: 10.1007/978-3-0348-7964-4. |
[14] |
D. Hilhorst, R. Kersner, E. Logak and M. Mimura, Interface dynamics of the Fisher equation with degenerate diffusion,, J. Differential Equations, 244 (2008), 2870.
doi: 10.1016/j.jde.2008.02.018. |
[15] |
S. Kamin and P. Rosenau, Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation,, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Ser. 9 Mat. Appl., 15 (2004), 271.
|
[16] |
N. S. Kolmogorov, N. Petrovsky and I. G. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière e son application a un problème biologique, (Russian),, Bull. Univ. État Moscou, 1 (1937), 1. Google Scholar |
[17] |
G. S. Medvedev, K. Ono and P. Holmes, Traveling wave solutions of the degenerate Kolmogorov-Petrovsky-Piskunov equation,, European J. Appl. Math., 14 (2003), 343.
doi: 10.1017/S0956792503005102. |
[18] |
J. A. Sherratt, Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations,, Proc. R. Soc. Lond. A, 456 (2000), 2365.
doi: 10.1098/rspa.2000.0616. |
[19] |
F. Sanches-Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations,, J. Differential Equations, 117 (1995), 281.
doi: 10.1006/jdeq.1995.1055. |
[20] |
Y. Tsukatani, K. Suzuki and K. Takahashi, Loss of density-dependent growth inhibition and dissociation of $\alpha$-catenin from E-cadherin,, J. Cell. Physiol., 173 (1997), 54. Google Scholar |
[1] |
Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737 |
[2] |
Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar. The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 547-559. doi: 10.3934/mbe.2009.6.547 |
[3] |
Lianzhang Bao, Zhengfang Zhou. Traveling wave in backward and forward parabolic equations from population dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1507-1522. doi: 10.3934/dcdsb.2014.19.1507 |
[4] |
Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129 |
[5] |
Harunori Monobe, Hirokazu Ninomiya. Traveling wave solutions with convex domains for a free boundary problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 905-914. doi: 10.3934/dcds.2017037 |
[6] |
Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293 |
[7] |
Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057 |
[8] |
Jian-Guo Liu, Min Tang, Li Wang, Zhennan Zhou. Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3011-3035. doi: 10.3934/dcdsb.2018297 |
[9] |
J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263 |
[10] |
Zhaosheng Feng, Goong Chen. Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 763-780. doi: 10.3934/dcds.2009.24.763 |
[11] |
Pao-Liu Chow. Stochastic PDE model for spatial population growth in random environments. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 55-65. doi: 10.3934/dcdsb.2016.21.55 |
[12] |
Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997 |
[13] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[14] |
Ronald Mickens, Kale Oyedeji. Traveling wave solutions to modified Burgers and diffusionless Fisher PDE's. Evolution Equations & Control Theory, 2019, 8 (1) : 139-147. doi: 10.3934/eect.2019008 |
[15] |
Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152 |
[16] |
Peng Feng, Zhengfang Zhou. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1145-1165. doi: 10.3934/cpaa.2007.6.1145 |
[17] |
Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455 |
[18] |
Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717 |
[19] |
Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105 |
[20] |
Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae. T model of growth and its application in systems of tumor-immune dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 925-938. doi: 10.3934/mbe.2013.10.925 |
2018 Impact Factor: 0.871
Tools
Metrics
Other articles
by authors
[Back to Top]