March  2013, 8(1): 171-190. doi: 10.3934/nhm.2013.8.171

Multiple travelling waves for an $SI$-epidemic model

1. 

Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France, France, France

Received  March 2012 Revised  September 2012 Published  April 2013

In this note we analyze a spatially structured SI epidemic model with vertical transmission, a logistic effect on vital dynamics and a density dependent incidence. The dynamics of the underlying system of ordinary differential equations are first shown to exhibit an infinite number of heteroclinic orbits connecting the trivial equilibrium with an interior equilibrium. Our mathematical study of the corresponding reaction-diffusion system is concerned with travelling wave solutions. Based on a detailed study of the center-unstable manifold around the interior equilibrium, we are able to prove the existence of an infinite number of travelling wave solutions connecting the trivial equilibrium and the interior equilibrium.
Citation: Arnaud Ducrot, Michel Langlais, Pierre Magal. Multiple travelling waves for an $SI$-epidemic model. Networks and Heterogeneous Media, 2013, 8 (1) : 171-190. doi: 10.3934/nhm.2013.8.171
References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford Univ. Press, Oxford, U.K., 1991.

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5.

[3]

H. Berestycki, O. Diekmann, K. Nagelkerke and P. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71 (2008), 399-429. doi: 10.1007/s11538-008-9367-5.

[4]

H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with forced speed, I - The case of the whole space, Discrete Continuous Dynam. Systems - B, 21 (2008), 41-67. doi: 10.3934/dcds.2008.21.41.

[5]

H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with forced speed, II - Cylindrical type domains, Discrete Continuous Dynam. Systems - A, 25 (2009), 19-61. doi: 10.3934/dcds.2009.25.19.

[6]

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 285 (1983).

[7]

F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology," Springer, New York, 2000.

[8]

S. Busenberg and K. C. Cooke, "Vertically Transmitted Diseases," Biomathematics, 23, Springer-Verlag, New York, 1993. doi: 10.1007/978-3-642-75301-5.

[9]

V. Capasso, "Mathematical Structures of Epidemic Systems," Lecture Notes in Biomathematics 97, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-540-70514-7.

[10]

S.-N. Chow, C. Li and D. Wang, "Normal Forms and Bifurcation of Planar Vector Fields," Cambridge University Press, Cambridge, 1994. doi: 10.1017/CBO9780511665639.

[11]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation," Wiley, Chichester, U.K., 2000.

[12]

A. Ducrot and M. Langlais, Travelling waves in invasion processes with pathogens, Math. Models Methods Appl. Sci., 18 (2008), 325-349. doi: 10.1142/S021820250800270X.

[13]

A. Ducrot, M. Langlais and P. Magal, Qualitative analysis and traveling wave solutions for the SI model with vertical transmission, Communications in Pure and Applied Analysis, 11 (2012), 97-113. doi: 10.3934/cpaa.2012.11.97.

[14]

R. A. Fisher, The wave of advance of advantageous genes, Ann. of Eugenics, 7 (1937), 355-369.

[15]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems," Mathematical Surveys and Monographs 25, Amer. Math. Soc., Providence, RI, 1988.

[16]

F. Hamel and L. Roques, Fast propagation for KPP equations with slowly decaying initial conditions, J. Diff. Equ., 249 (2010), 1726-1745. doi: 10.1016/j.jde.2010.06.025.

[17]

Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models Methods Appl. Sci., 5 (1995), 935-966. doi: 10.1142/S0218202595000504.

[18]

A. N. Kolmogorov, I. G. Petrovski and N. S. Piskunov, Etude de l'équation de la chaleur avec croissance de la quantité de matière et son application à un problème biologique, Bull. Moskov. Gos. Univ. Mat. Mekh., 1 (1937).

[19]

D. A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type, SIAM J. Appl. Math., 34 (1978), 93-103. doi: 10.1137/0134008.

[20]

K.-S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky and Piscounov, J. Diff. Equ., 59 (1985), 44-70. doi: 10.1016/0022-0396(85)90137-8.

[21]

F. Rothe, Convergence to travelling fronts in semilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 80 (1978), 213-234. doi: 10.1017/S0308210500010258.

[22]

S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models, in "Mathematics for Life Science and Medicine" (eds. Y. Takeuchi, K. Sato and Y. Iwasa), Springer-Verlag, Berlin, (2007), 99-122.

[23]

S. Ruan and J. Wu, Modeling spatial spread of communicable diseases involving animal hosts, in "Spatial Ecology", Chapman $&$ Hall/CRC, Boca Raton, FL, (2009), 293-316.

[24]

H. L. Smith, "Monotone Dynamical Systems, an Introduction to the Theory of Competitive and Cooperative Systems," Math. Surveys and Monographs, 41, American Mathematical Society, Providence, Rhode Island 1995.

[25]

H. R. Thieme, "Mathematics in Population Biology," Princeton Univ. Press, Princeton, NJ, 2003.

[26]

K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508.

[27]

A. Volpert, V. Volpert and V. Volpert, "Travelling Wave Solutions of Parabolic Systems," Translations of Mathematical Monographs, 140, AMS Providence, RI, 1994.

[28]

V. A. Volpert and Y. M. Suhov, Stationary solutions of non-autonomous Kolmogorov-Petrovsky-Piskunov equations, Ergodic Theory and Dynamical Systems, 19 (1999), 809-835. doi: 10.1017/S0143385799138823.

show all references

References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford Univ. Press, Oxford, U.K., 1991.

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5.

[3]

H. Berestycki, O. Diekmann, K. Nagelkerke and P. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71 (2008), 399-429. doi: 10.1007/s11538-008-9367-5.

[4]

H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with forced speed, I - The case of the whole space, Discrete Continuous Dynam. Systems - B, 21 (2008), 41-67. doi: 10.3934/dcds.2008.21.41.

[5]

H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with forced speed, II - Cylindrical type domains, Discrete Continuous Dynam. Systems - A, 25 (2009), 19-61. doi: 10.3934/dcds.2009.25.19.

[6]

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 285 (1983).

[7]

F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology," Springer, New York, 2000.

[8]

S. Busenberg and K. C. Cooke, "Vertically Transmitted Diseases," Biomathematics, 23, Springer-Verlag, New York, 1993. doi: 10.1007/978-3-642-75301-5.

[9]

V. Capasso, "Mathematical Structures of Epidemic Systems," Lecture Notes in Biomathematics 97, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-540-70514-7.

[10]

S.-N. Chow, C. Li and D. Wang, "Normal Forms and Bifurcation of Planar Vector Fields," Cambridge University Press, Cambridge, 1994. doi: 10.1017/CBO9780511665639.

[11]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation," Wiley, Chichester, U.K., 2000.

[12]

A. Ducrot and M. Langlais, Travelling waves in invasion processes with pathogens, Math. Models Methods Appl. Sci., 18 (2008), 325-349. doi: 10.1142/S021820250800270X.

[13]

A. Ducrot, M. Langlais and P. Magal, Qualitative analysis and traveling wave solutions for the SI model with vertical transmission, Communications in Pure and Applied Analysis, 11 (2012), 97-113. doi: 10.3934/cpaa.2012.11.97.

[14]

R. A. Fisher, The wave of advance of advantageous genes, Ann. of Eugenics, 7 (1937), 355-369.

[15]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems," Mathematical Surveys and Monographs 25, Amer. Math. Soc., Providence, RI, 1988.

[16]

F. Hamel and L. Roques, Fast propagation for KPP equations with slowly decaying initial conditions, J. Diff. Equ., 249 (2010), 1726-1745. doi: 10.1016/j.jde.2010.06.025.

[17]

Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models Methods Appl. Sci., 5 (1995), 935-966. doi: 10.1142/S0218202595000504.

[18]

A. N. Kolmogorov, I. G. Petrovski and N. S. Piskunov, Etude de l'équation de la chaleur avec croissance de la quantité de matière et son application à un problème biologique, Bull. Moskov. Gos. Univ. Mat. Mekh., 1 (1937).

[19]

D. A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type, SIAM J. Appl. Math., 34 (1978), 93-103. doi: 10.1137/0134008.

[20]

K.-S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky and Piscounov, J. Diff. Equ., 59 (1985), 44-70. doi: 10.1016/0022-0396(85)90137-8.

[21]

F. Rothe, Convergence to travelling fronts in semilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 80 (1978), 213-234. doi: 10.1017/S0308210500010258.

[22]

S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models, in "Mathematics for Life Science and Medicine" (eds. Y. Takeuchi, K. Sato and Y. Iwasa), Springer-Verlag, Berlin, (2007), 99-122.

[23]

S. Ruan and J. Wu, Modeling spatial spread of communicable diseases involving animal hosts, in "Spatial Ecology", Chapman $&$ Hall/CRC, Boca Raton, FL, (2009), 293-316.

[24]

H. L. Smith, "Monotone Dynamical Systems, an Introduction to the Theory of Competitive and Cooperative Systems," Math. Surveys and Monographs, 41, American Mathematical Society, Providence, Rhode Island 1995.

[25]

H. R. Thieme, "Mathematics in Population Biology," Princeton Univ. Press, Princeton, NJ, 2003.

[26]

K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508.

[27]

A. Volpert, V. Volpert and V. Volpert, "Travelling Wave Solutions of Parabolic Systems," Translations of Mathematical Monographs, 140, AMS Providence, RI, 1994.

[28]

V. A. Volpert and Y. M. Suhov, Stationary solutions of non-autonomous Kolmogorov-Petrovsky-Piskunov equations, Ergodic Theory and Dynamical Systems, 19 (1999), 809-835. doi: 10.1017/S0143385799138823.

[1]

Arnaud Ducrot, Michel Langlais, Pierre Magal. Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Communications on Pure and Applied Analysis, 2012, 11 (1) : 97-113. doi: 10.3934/cpaa.2012.11.97

[2]

A. Ducrot. Travelling wave solutions for a scalar age-structured equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 251-273. doi: 10.3934/dcdsb.2007.7.251

[3]

Fred Brauer. A model for an SI disease in an age - structured population. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257

[4]

Claude-Michael Brauner, Josephus Hulshof, J.-F. Ripoll. Existence of travelling wave solutions in a combustion-radiation model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 193-208. doi: 10.3934/dcdsb.2001.1.193

[5]

Janet Dyson, Eva Sánchez, Rosanna Villella-Bressan, Glenn F. Webb. An age and spatially structured model of tumor invasion with haptotaxis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 45-60. doi: 10.3934/dcdsb.2007.8.45

[6]

Chueh-Hsin Chang, Chiun-Chuan Chen. Travelling wave solutions of a free boundary problem for a two-species competitive model. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1065-1074. doi: 10.3934/cpaa.2013.12.1065

[7]

Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41

[8]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[9]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[10]

Abed Boulouz. A spatially and size-structured population model with unbounded birth process. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022038

[11]

Christopher K. R. T. Jones, Robert Marangell. The spectrum of travelling wave solutions to the Sine-Gordon equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 925-937. doi: 10.3934/dcdss.2012.5.925

[12]

Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure and Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637

[13]

Jibin Li, Fengjuan Chen. Exact travelling wave solutions and their dynamical behavior for a class coupled nonlinear wave equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 163-172. doi: 10.3934/dcdsb.2013.18.163

[14]

Jibin Li, Weigou Rui, Yao Long, Bin He. Travelling wave solutions for higher-order wave equations of KDV type (III). Mathematical Biosciences & Engineering, 2006, 3 (1) : 125-135. doi: 10.3934/mbe.2006.3.125

[15]

Evelyn K. Thomas, Katharine F. Gurski, Kathleen A. Hoffman. Analysis of SI models with multiple interacting populations using subpopulations. Mathematical Biosciences & Engineering, 2015, 12 (1) : 135-161. doi: 10.3934/mbe.2015.12.135

[16]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6117-6130. doi: 10.3934/dcdsb.2021009

[17]

Sebastian Aniţa, Vincenzo Capasso, Ana-Maria Moşneagu. Global eradication for spatially structured populations by regional control. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2511-2533. doi: 10.3934/dcdsb.2018263

[18]

Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043

[19]

Min Li, Zhaoyang Yin. Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6471-6485. doi: 10.3934/dcds.2017280

[20]

Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]