March  2013, 8(1): 171-190. doi: 10.3934/nhm.2013.8.171

Multiple travelling waves for an $SI$-epidemic model

1. 

Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France, France, France

Received  March 2012 Revised  September 2012 Published  April 2013

In this note we analyze a spatially structured SI epidemic model with vertical transmission, a logistic effect on vital dynamics and a density dependent incidence. The dynamics of the underlying system of ordinary differential equations are first shown to exhibit an infinite number of heteroclinic orbits connecting the trivial equilibrium with an interior equilibrium. Our mathematical study of the corresponding reaction-diffusion system is concerned with travelling wave solutions. Based on a detailed study of the center-unstable manifold around the interior equilibrium, we are able to prove the existence of an infinite number of travelling wave solutions connecting the trivial equilibrium and the interior equilibrium.
Citation: Arnaud Ducrot, Michel Langlais, Pierre Magal. Multiple travelling waves for an $SI$-epidemic model. Networks & Heterogeneous Media, 2013, 8 (1) : 171-190. doi: 10.3934/nhm.2013.8.171
References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford Univ. Press, (1991).   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

H. Berestycki, O. Diekmann, K. Nagelkerke and P. Zegeling, Can a species keep pace with a shifting climate?,, Bull. Math. Biol., 71 (2008), 399.  doi: 10.1007/s11538-008-9367-5.  Google Scholar

[4]

H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with forced speed, I - The case of the whole space,, Discrete Continuous Dynam. Systems - B, 21 (2008), 41.  doi: 10.3934/dcds.2008.21.41.  Google Scholar

[5]

H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with forced speed, II - Cylindrical type domains,, Discrete Continuous Dynam. Systems - A, 25 (2009), 19.  doi: 10.3934/dcds.2009.25.19.  Google Scholar

[6]

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves,, Mem. Amer. Math. Soc., 285 (1983).   Google Scholar

[7]

F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,", Springer, (2000).   Google Scholar

[8]

S. Busenberg and K. C. Cooke, "Vertically Transmitted Diseases,", Biomathematics, 23 (1993).  doi: 10.1007/978-3-642-75301-5.  Google Scholar

[9]

V. Capasso, "Mathematical Structures of Epidemic Systems,", Lecture Notes in Biomathematics 97, 97 (1993).  doi: 10.1007/978-3-540-70514-7.  Google Scholar

[10]

S.-N. Chow, C. Li and D. Wang, "Normal Forms and Bifurcation of Planar Vector Fields,", Cambridge University Press, (1994).  doi: 10.1017/CBO9780511665639.  Google Scholar

[11]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,", Wiley, (2000).   Google Scholar

[12]

A. Ducrot and M. Langlais, Travelling waves in invasion processes with pathogens,, Math. Models Methods Appl. Sci., 18 (2008), 325.  doi: 10.1142/S021820250800270X.  Google Scholar

[13]

A. Ducrot, M. Langlais and P. Magal, Qualitative analysis and traveling wave solutions for the SI model with vertical transmission,, Communications in Pure and Applied Analysis, 11 (2012), 97.  doi: 10.3934/cpaa.2012.11.97.  Google Scholar

[14]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 355.   Google Scholar

[15]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs 25, (1988).   Google Scholar

[16]

F. Hamel and L. Roques, Fast propagation for KPP equations with slowly decaying initial conditions,, J. Diff. Equ., 249 (2010), 1726.  doi: 10.1016/j.jde.2010.06.025.  Google Scholar

[17]

Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model,, Math. Models Methods Appl. Sci., 5 (1995), 935.  doi: 10.1142/S0218202595000504.  Google Scholar

[18]

A. N. Kolmogorov, I. G. Petrovski and N. S. Piskunov, Etude de l'équation de la chaleur avec croissance de la quantité de matière et son application à un problème biologique,, Bull. Moskov. Gos. Univ. Mat. Mekh., 1 (1937).   Google Scholar

[19]

D. A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type,, SIAM J. Appl. Math., 34 (1978), 93.  doi: 10.1137/0134008.  Google Scholar

[20]

K.-S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky and Piscounov,, J. Diff. Equ., 59 (1985), 44.  doi: 10.1016/0022-0396(85)90137-8.  Google Scholar

[21]

F. Rothe, Convergence to travelling fronts in semilinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 80 (1978), 213.  doi: 10.1017/S0308210500010258.  Google Scholar

[22]

S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models,, in, (2007), 99.   Google Scholar

[23]

S. Ruan and J. Wu, Modeling spatial spread of communicable diseases involving animal hosts,, in, (2009), 293.   Google Scholar

[24]

H. L. Smith, "Monotone Dynamical Systems, an Introduction to the Theory of Competitive and Cooperative Systems,", Math. Surveys and Monographs, 41 (1995).   Google Scholar

[25]

H. R. Thieme, "Mathematics in Population Biology,", Princeton Univ. Press, (2003).   Google Scholar

[26]

K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time,, J. Math. Kyoto Univ., 18 (1978), 453.   Google Scholar

[27]

A. Volpert, V. Volpert and V. Volpert, "Travelling Wave Solutions of Parabolic Systems,", Translations of Mathematical Monographs, 140 (1994).   Google Scholar

[28]

V. A. Volpert and Y. M. Suhov, Stationary solutions of non-autonomous Kolmogorov-Petrovsky-Piskunov equations,, Ergodic Theory and Dynamical Systems, 19 (1999), 809.  doi: 10.1017/S0143385799138823.  Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford Univ. Press, (1991).   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

H. Berestycki, O. Diekmann, K. Nagelkerke and P. Zegeling, Can a species keep pace with a shifting climate?,, Bull. Math. Biol., 71 (2008), 399.  doi: 10.1007/s11538-008-9367-5.  Google Scholar

[4]

H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with forced speed, I - The case of the whole space,, Discrete Continuous Dynam. Systems - B, 21 (2008), 41.  doi: 10.3934/dcds.2008.21.41.  Google Scholar

[5]

H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with forced speed, II - Cylindrical type domains,, Discrete Continuous Dynam. Systems - A, 25 (2009), 19.  doi: 10.3934/dcds.2009.25.19.  Google Scholar

[6]

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves,, Mem. Amer. Math. Soc., 285 (1983).   Google Scholar

[7]

F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,", Springer, (2000).   Google Scholar

[8]

S. Busenberg and K. C. Cooke, "Vertically Transmitted Diseases,", Biomathematics, 23 (1993).  doi: 10.1007/978-3-642-75301-5.  Google Scholar

[9]

V. Capasso, "Mathematical Structures of Epidemic Systems,", Lecture Notes in Biomathematics 97, 97 (1993).  doi: 10.1007/978-3-540-70514-7.  Google Scholar

[10]

S.-N. Chow, C. Li and D. Wang, "Normal Forms and Bifurcation of Planar Vector Fields,", Cambridge University Press, (1994).  doi: 10.1017/CBO9780511665639.  Google Scholar

[11]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,", Wiley, (2000).   Google Scholar

[12]

A. Ducrot and M. Langlais, Travelling waves in invasion processes with pathogens,, Math. Models Methods Appl. Sci., 18 (2008), 325.  doi: 10.1142/S021820250800270X.  Google Scholar

[13]

A. Ducrot, M. Langlais and P. Magal, Qualitative analysis and traveling wave solutions for the SI model with vertical transmission,, Communications in Pure and Applied Analysis, 11 (2012), 97.  doi: 10.3934/cpaa.2012.11.97.  Google Scholar

[14]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 355.   Google Scholar

[15]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs 25, (1988).   Google Scholar

[16]

F. Hamel and L. Roques, Fast propagation for KPP equations with slowly decaying initial conditions,, J. Diff. Equ., 249 (2010), 1726.  doi: 10.1016/j.jde.2010.06.025.  Google Scholar

[17]

Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model,, Math. Models Methods Appl. Sci., 5 (1995), 935.  doi: 10.1142/S0218202595000504.  Google Scholar

[18]

A. N. Kolmogorov, I. G. Petrovski and N. S. Piskunov, Etude de l'équation de la chaleur avec croissance de la quantité de matière et son application à un problème biologique,, Bull. Moskov. Gos. Univ. Mat. Mekh., 1 (1937).   Google Scholar

[19]

D. A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type,, SIAM J. Appl. Math., 34 (1978), 93.  doi: 10.1137/0134008.  Google Scholar

[20]

K.-S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky and Piscounov,, J. Diff. Equ., 59 (1985), 44.  doi: 10.1016/0022-0396(85)90137-8.  Google Scholar

[21]

F. Rothe, Convergence to travelling fronts in semilinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 80 (1978), 213.  doi: 10.1017/S0308210500010258.  Google Scholar

[22]

S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models,, in, (2007), 99.   Google Scholar

[23]

S. Ruan and J. Wu, Modeling spatial spread of communicable diseases involving animal hosts,, in, (2009), 293.   Google Scholar

[24]

H. L. Smith, "Monotone Dynamical Systems, an Introduction to the Theory of Competitive and Cooperative Systems,", Math. Surveys and Monographs, 41 (1995).   Google Scholar

[25]

H. R. Thieme, "Mathematics in Population Biology,", Princeton Univ. Press, (2003).   Google Scholar

[26]

K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time,, J. Math. Kyoto Univ., 18 (1978), 453.   Google Scholar

[27]

A. Volpert, V. Volpert and V. Volpert, "Travelling Wave Solutions of Parabolic Systems,", Translations of Mathematical Monographs, 140 (1994).   Google Scholar

[28]

V. A. Volpert and Y. M. Suhov, Stationary solutions of non-autonomous Kolmogorov-Petrovsky-Piskunov equations,, Ergodic Theory and Dynamical Systems, 19 (1999), 809.  doi: 10.1017/S0143385799138823.  Google Scholar

[1]

Arnaud Ducrot, Michel Langlais, Pierre Magal. Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Communications on Pure & Applied Analysis, 2012, 11 (1) : 97-113. doi: 10.3934/cpaa.2012.11.97

[2]

A. Ducrot. Travelling wave solutions for a scalar age-structured equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 251-273. doi: 10.3934/dcdsb.2007.7.251

[3]

Fred Brauer. A model for an SI disease in an age - structured population. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257

[4]

Claude-Michael Brauner, Josephus Hulshof, J.-F. Ripoll. Existence of travelling wave solutions in a combustion-radiation model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 193-208. doi: 10.3934/dcdsb.2001.1.193

[5]

Janet Dyson, Eva Sánchez, Rosanna Villella-Bressan, Glenn F. Webb. An age and spatially structured model of tumor invasion with haptotaxis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 45-60. doi: 10.3934/dcdsb.2007.8.45

[6]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[7]

Chueh-Hsin Chang, Chiun-Chuan Chen. Travelling wave solutions of a free boundary problem for a two-species competitive model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1065-1074. doi: 10.3934/cpaa.2013.12.1065

[8]

Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41

[9]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[10]

Christopher K. R. T. Jones, Robert Marangell. The spectrum of travelling wave solutions to the Sine-Gordon equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 925-937. doi: 10.3934/dcdss.2012.5.925

[11]

Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure & Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637

[12]

Jibin Li, Fengjuan Chen. Exact travelling wave solutions and their dynamical behavior for a class coupled nonlinear wave equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 163-172. doi: 10.3934/dcdsb.2013.18.163

[13]

Jibin Li, Weigou Rui, Yao Long, Bin He. Travelling wave solutions for higher-order wave equations of KDV type (III). Mathematical Biosciences & Engineering, 2006, 3 (1) : 125-135. doi: 10.3934/mbe.2006.3.125

[14]

Evelyn K. Thomas, Katharine F. Gurski, Kathleen A. Hoffman. Analysis of SI models with multiple interacting populations using subpopulations. Mathematical Biosciences & Engineering, 2015, 12 (1) : 135-161. doi: 10.3934/mbe.2015.12.135

[15]

Sebastian Aniţa, Vincenzo Capasso, Ana-Maria Moşneagu. Global eradication for spatially structured populations by regional control. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2511-2533. doi: 10.3934/dcdsb.2018263

[16]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[17]

Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043

[18]

Min Li, Zhaoyang Yin. Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6471-6485. doi: 10.3934/dcds.2017280

[19]

Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719

[20]

Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]