Citation: |
[1] |
R. Aurich and F. Steiner, Periodic-orbit sum rules for the hadamard-gutzwiller model, Physica D, 39 (1989), 169-193.doi: 10.1016/0167-2789(89)90003-1. |
[2] |
T. I. Baker and J. D. Cowan, Spontaneous pattern formation and pinning in the primary visual cortex, Journal of Physiology-Paris, 103 (2009), 52-68.doi: 10.1016/j.jphysparis.2009.05.011. |
[3] |
N. L. Balazs and A. Voros, Chaos on the pseudosphere, Physics Reports, 143 (1986), 109-240.doi: 10.1016/0370-1573(86)90159-6. |
[4] |
R. Ben-Yishai, RL Bar-Or and H. Sompolinsky, Theory of orientation tuning in visual cortex, Proceedings of the National Academy of Sciences, 92 (1995), 3844-3848.doi: 10.1073/pnas.92.9.3844. |
[5] |
J. Bigun and G. Granlund, Optimal orientation detection of linear symmetry, in "Proc. First Int'l Conf. Comput. Vision", pages 433-438. EEE Computer Society Press, (1987). |
[6] |
B. Blumenfeld, D. Bibitchkov and M. Tsodyks, Neural network model of the primary visual cortex: From functional architecture to lateral connectivity and back, Journal of Computational Neuroscience, 20 (2006), 219-241.doi: 10.1007/s10827-006-6307-y. |
[7] |
I. Bosch Vivancos, P. Chossat and I. Melbourne, New planforms in systems of partial differential equations with Euclidean symmetry, Archive for Rational Mechanics and Analysis, 131 (1995), 199-224.doi: 10.1007/BF00382886. |
[8] |
W. H. Bosking, Y. Zhang, B. Schofield and D. Fitzpatrick, Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex, The Journal of Neuroscience, 17 (1997), 2112-2127. |
[9] |
P. C. Bressloff and J. D.Cowan, The functional geometry of local and horizontal connections in a model of v1, Journal of Physiology, Paris, 97 (2003), 221-236.doi: 10.1016/j.jphysparis.2003.09.017. |
[10] |
P. C. Bressloff and J. D. Cowan, A spherical model for orientation and spatial frequency tuning in a cortical hypercolumn, Philosophical Transactions of the Royal Society B, (2003).doi: 10.1098/rstb.2002.1109. |
[11] |
P. C. Bressloff, Spatially periodic modulation of cortical patterns by long-range horizontal connections, Physica D: Nonlinear Phenomena, 185 (2003), 131-157.doi: 10.1016/S0167-2789(03)00238-0. |
[12] |
P. C. Bressloff and J. D. Cowan, The visual cortex as a crystal, Physica D: Nonlinear Phenomena, 173 (2002), 226-258.doi: 10.1016/S0167-2789(02)00677-2. |
[13] |
P. C. Bressloff, J. D. Cowan, M. Golubitsky and P. J. Thomas, Scalar and pseudoscalar bifurcations motivated by pattern formation on the visual cortex, Nonlinearity, 14 (2001), 739.doi: 10.1088/0951-7715/14/4/305. |
[14] |
P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas and M. C. Wiener, Geometric visual hallucinations, euclidean symmetry and the functional architecture of striate cortex, Phil. Trans. R. Soc. Lond. B, 306 (2001), 299-330.doi: 10.1098/rstb.2000.0769. |
[15] |
P. C. Bressloff and A. M. Oster, Theory for the alignment of cortical feature maps during development, Physical Review E, 82 (2010), 021920.doi: 10.1103/PhysRevE.82.021920. |
[16] |
I. Chavel, "Eigenvalues in Riemannian Geometry," 115. Academic Press, 1984. |
[17] |
S. Chemla and F. Chavane, Voltage-sensitive dye imaging: Technique review and models, Journal of Physiology-Paris, 104 (2010), 40-50.doi: 10.1016/j.jphysparis.2009.11.009. |
[18] |
P. Chossat, G. Faye and O. Faugeras, Bifurcations of hyperbolic planforms, Journal of Nonlinear Science, February 2011.doi: 10.1007/s00332-010-9089-3. |
[19] |
P. Chossat and R. Lauterbach, "Methods in Equivariant Bifurcations and Dynamical Systems," World Scientific Publishing Company, Singapur, 2000. |
[20] |
P. Chossat and O. Faugeras, Hyperbolic planforms in relation to visual edges and textures perception, Plos. Comput. Biol., 5 (2009), e1000625.doi: 10.1371/journal.pcbi.1000625. |
[21] |
P. G. Ciarlet and J. L. Lions, "Handbook of Numerical Analysis," II Finite Element Methods (part1). North-Holland, 1991. |
[22] |
G. Citti and A. Sarti, A cortical based model of perceptual completion in the roto-translation space, J. Math. Imaging Vis., (2006), 307-326.doi: 10.1007/s10851-005-3630-2. |
[23] |
D. P. Edwards, K. P. Purpura and E. Kaplan, Contrast sensitivity and spatial frequency response of primate cortical neurons in and around the cytochrome oxidase blobs, Vision Research, 35 (1995), 1501-1523,. |
[24] |
I. Erdélyi, "Higher Transcendental Functions," 1 Robert E. Krieger Publishing Company, 1985. |
[25] |
G. B. Ermentrout and J. D. Cowan, A mathematical theory of visual hallucination patterns, Biological Cybernetics, 34 (1979), 137-150.doi: 10.1007/BF00336965. |
[26] |
G. Faye and P. Chossat, Bifurcation diagrams and heteroclinic networks of octagonal h-planforms, Journal of Nonlinear Science, 22 (2012), 277-326.doi: 10.1007/s00332-011-9118-x. |
[27] |
G. Faye, P. Chossat and O. Faugeras, Analysis of a hyperbolic geometric model for visual texture perception, The Journal of Mathematical Neuroscience, 1 (2011).doi: 10.1186/2190-8567-1-4. |
[28] |
M. Golubitsky, L. J. Shiau and A. Török, Bifurcation on the visual cortex with weakly anisotropic lateral coupling, SIAM Journal on Applied Dynamical Systems, 2 (2003), 97-143.doi: 10.1137/S1111111102409882. |
[29] |
M. Golubitsky, I. Stewart and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory," volume II. Springer, 1988.doi: 10.1007/978-1-4612-4574-2. |
[30] |
D. Hansel and H. Sompolinsky, Modeling feature selectivity in local cortical circuits, Methods of Neuronal Modeling, (1997), 499-567. |
[31] |
M. Haragus and G. Iooss, "Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Systems," EDP Sci. Springer Verlag UTX Series, 2010.doi: 10.1007/978-0-85729-112-7. |
[32] |
S. Helgason, "Groups and Geometric Analysis," 83 of Mathematical Surveys and Monographs. American Mathematical Society, 2000. |
[33] |
R. B. Hoyle, "Pattern Formation: an Introduction to Methods," Cambridge Univ Pr, 2006.doi: 10.1017/CBO9780511616051. |
[34] |
D. H. Hubel and T. N. Wiesel, Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat, Journal of Neurophysiology, 28 (1965), 229-289, |
[35] |
D. H. Hubel and T. N. Wiesel, Receptive fields and functional architecture of monkey striate cortex, The Journal of Physiology, 195 (1968), 215. |
[36] |
D. H. Hubel and T. N. Wiesel, Functional architecture of macaque monkey, Proceedings of the Royal Society, London [B]: (1977), 1-59. |
[37] |
H. Iwaniec, "Spectral Methods of Automorphic Forms," 53 of AMS Graduate Series in Mathematics, AMS Bookstore, 2002. |
[38] |
M. Kaschube, M. Schnabel, S. Löwel, D. M. Coppola, L. E. White and F. Wolf, Universality in the evolution of orientation columns in the visual cortex, Science, 330 (2010), 1113.doi: 10.1126/science.1194869. |
[39] |
M. Kaschube, M. Schnabel and F. Wolf, Self-organization and the selection of pinwheel density in visual cortical development, New Journal of Physics, 10 (2008), 015009.doi: 10.1088/1367-2630/10/1/015009. |
[40] |
S. Katok, "Fuchsian Groups," Chicago Lectures in Mathematics. The University of Chicago Press, 1992. |
[41] |
H. Kluver, "Mescal, and Mechanisms of Hallucinations," University of Chicago Press Chicago, 1966. |
[42] |
H. Knutsson, Representing local structure using tensors, Scandinavian Conference on Image Analysis, (1989), 244-251.doi: 10.1007/978-3-642-21227-7_51. |
[43] |
N. N. Lebedev, "Special Functions and Their Applications," (edited by R. A. Silverman), Dover Pubns, 1972. |
[44] |
P. S. Leon, I. Vanzetta, G. S. Masson and L. U. Perrinet, Motion Clouds: Model-based stimulus synthesis of natural-like random textures for the study of motion perception, Journal of Neurophysiology, 107 (2012), 3217-3226.doi: 10.1152/jn.00737.2011. |
[45] |
M. S. Livingstone and D. H. Hubel, Anatomy and physiology of a color system in the primate visual cortex, Journal of Neuroscience, 4 (1984), 309-356. |
[46] |
J. S. Lund, A. Angelucci and P. C. Bressloff, Anatomical substrates for functional columns in macaque monkey primary visual cortex, Cerebral Cortex, 12 (2003), 15-24.doi: 10.1093/cercor/13.1.15. |
[47] |
I. Melbourne, A singularity theory analysis of bifurcation problems with octahedral symmetry, Dynamics and Stability of Systems, 1 (1986).doi: 10.1080/02681118608806020. |
[48] |
W. Miller, "Symmetry Groups and Their Applications," Academic Press, 1972. |
[49] |
M. Moakher, A differential geometric approach to the geometric mean of symmetric positie-definite matrices, SIAM J. Matrix Anal. Appl., 26 (2005), 735-747.doi: 10.1137/S0895479803436937. |
[50] |
J. D. Murray, "Mathematical Biology II, Spatial Models and Biomedical Applications," Springer, 2003. |
[51] |
G. A. Orban, H. Kennedy and J. Bullier, Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: Influence of eccentricity, Journal of Neurophysiology, 56 (1986), 462-480. |
[52] |
G. Oster, Phosphenes, Scientific American, 222 (1970), 82.doi: 10.1038/scientificamerican0270-82. |
[53] |
A. M. Oster and P. C. Bressloff, A developmental model of ocular dominance column formation on a growing cortex, Bulletin of Mathematical Biology, (2006).doi: 10.1007/s11538-005-9055-7. |
[54] |
J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact structure, Journal of Physiology-Paris, 97 (2003), 265-309. |
[55] |
J. Petitot, "Neurogéométrie de la Vision," Les Éditions de l'École Polytechnique, 2009. |
[56] |
G. Sanguinetti, A. Sarti and G. Citti, Implementation of a Model for Perceptual Completion in $\R^2\times S^1$, Computer Vision and Computer Graphics, Communications in Computer and Information Science, 24 (2009), 188-201. |
[57] |
A. Sarti and G. Citti, Non-commutative field theory in the visual cortex, Computer Vision: from Surfaces to 3D Objects, C. Tyler editor, CRC Press, (2010). |
[58] |
A. Sarti, G. Citti and J. Petitot, The symplectic structure of the primary visual cortex, Biological Cybernetics, 98 (2008), 33-48.doi: 10.1007/s00422-007-0194-9. |
[59] |
J. Schummers, J. Mariño and M. Sur, Synaptic integration by v1 neurons depends on location within the orientation map, Neuron, 36 (2002), 969-978.doi: 10.1016/S0896-6273(02)01012-7. |
[60] |
J. P. Serre, "Représentations Linéaires des Groupes Finis," Hermann, 1978. |
[61] |
L. C. Sincich and J. C. Horton, Divided by cytochrome oxidase: A map of the projections from V1 to V2 in macaques, Science, 295 (2002), 1734-1737. |
[62] |
A. Terras, "Harmonic Analysis on Symmetric Spaces and Applications," Springer-Verlag, 2, 1988.doi: 10.1007/978-1-4612-3820-1. |
[63] |
R. B. H. Tootell, S. L. Hamilton, M. S. Silverman, E. Switkes and R. L. De Valois, Functional anatomy of macaque striate cortex. V. Spatial Frequency, Journal of Neuroscience, 8 (1988), 1610-1624. |
[64] |
R. Veltz and O. Faugeras, Local/global analysis of the stationary solutions of some neural field equations, SIAM Journal on Applied Dynamical Systems, 9 (2010), 954-998.doi: 10.1137/090773611. |
[65] |
R. Veltz and O. Faugeras, Illusions in the ring model of visual orientation selectivity, Technical Report, arXiv:1007.2493, (2010).doi: 10.1137/090773611. |
[66] |
G. N. Watson, "A Treatise on the Theory of Bessel Functions," Cambridge University Press, 1995. |
[67] |
H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. Journal, 12 (1972), 1-24.doi: 10.1016/S0006-3495(72)86068-5. |
[68] |
H. R. Wilson and J. D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Biological Cybernetics, 13 (1973), 55-80.doi: 10.1007/BF00288786. |
[69] |
F. Wolf and T. Geisel, Spontaneous pinwheel annihilation during visual development, Nature, 395 (1998), 73-78. |
[70] |
A. Zettl, "Sturm-Liouville Theory," 121, American Mathematical Society, 2005. |