March  2013, 8(1): 261-273. doi: 10.3934/nhm.2013.8.261

Stochastic control of traffic patterns

1. 

Bogolyubov Institute for Theoretical Physics, Metrologichna str. 14 B, 01413, Kiev

2. 

Department of Applied Mathematics and Statistics, University of the Basque Country, E-48080 Bilbao

3. 

AKAD University of Applied Sciences, D-70469 Stuttgart, Germany

4. 

Department of Mathematics and Computer Science & Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

5. 

Toyota Central R&D Labs, Nagakute, Aichi, Japan

6. 

Department of Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark, Denmark

Received  January 2012 Revised  February 2013 Published  April 2013

A stochastic modulation of the safety distance can reduce traffic jams. It is found that the effect of random modulation on congestive flow formation depends on the spatial correlation of the noise. Jam creation is suppressed for highly correlated noise. The results demonstrate the advantage of heterogeneous performance of the drivers in time as well as individually. This opens the possibility for the construction of technical tools to control traffic jam formation.
Citation: Yuri B. Gaididei, Carlos Gorria, Rainer Berkemer, Peter L. Christiansen, Atsushi Kawamoto, Mads P. Sørensen, Jens Starke. Stochastic control of traffic patterns. Networks and Heterogeneous Media, 2013, 8 (1) : 261-273. doi: 10.3934/nhm.2013.8.261
References:
[1]

M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions," Dover Publications, Inc., New York, 1972. doi: 10.1119/1.1972842.

[2]

M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035.

[3]

A. Bose and P. Ioannou, Mixed manual/semi-automated traffic: A macroscopic analysis, Trasp. Res., Part C: Emerg. Technol., 11 (2003), 439. doi: 10.1016/j.trc.2002.04.001.

[4]

A. H. Cohen, P. J. Holmes and R. H. Rand, The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model, J. Math. Biol., 13 (1982), 345-369. doi: 10.1007/BF00276069.

[5]

L. C. Davis, Effect of adaptive cruise control systems on traffic flow, Phys. Rev. E, 69 (2004), 066110. doi: 10.1103/PhysRevE.69.066110.

[6]

Y. Gaididei, C. Gorria, R. Berkemer, A. Kawamoto, A. Kawamoto, T. Shiga, P. L. Christiansen, M. P. Sørensen and J. Starke, Traffic jam control by time-modulating the safety distance, Submitted.

[7]

Yu. B. Gaididei, R. Berkemer, J. G. Caputo, P. L. Christiansen, A. Kawamoto, T. Shiga, M. P. Sørensen and J. Starke, Analytical solutions of jam pattern formation on a ring for a class of optimal velocity traffic models, New Journal of Phys., 11 (2009), 073012 (1-19). doi: 10.1088/1367-2630/11/7/073012.

[8]

Yu. B. Gaididei, R. Berkemer, C. Gorria, P. L. Christiansen, A. Kawamoto, T. Shiga, M. P. Sørensen and J. Starke, Complex spatiotemporal behavior in a chain of one-way nonlinearly coupled elements, Discrete and Continuous Dynamical Systems. Series S., 4 (2011), 1167-1179. doi: 10.3934/dcdss.2011.4.1167.

[9]

C. W. Gardiner, "Handbook of Stochastic Method,'' 2nd ed. (Springer, Berlin), 1989. doi: 10.1007/978-3-662-02377-8.

[10]

D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys., 73 (2001), 1067-1141. doi: 10.1103/RevModPhys.73.1067.

[11]

V. In, A. Kho, J. D. Neff, A. Palacios, P. Longhini and B. K. Meadows, Experimental observation of multifrequency patterns in arrays of coupled nonlinear oscillators, Phys. Rev. Lett., 91 (2003), 244101-244104. doi: 10.1103/PhysRevLett.91.244101.

[12]

B. S. Kerner, "The physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory," Heidelberg: Springer, 2004.

[13]

B. S. Kerner, "Introduction to Modern Traffic Flow Theory and Control. The Long Road to Three-Phase Traffic Theory," Berlin: Springer, 2009.

[14]

S. Kikuchi, N. Uno and M. Tanaka, Impacts of shorter perception-reaction time of adapted cruise controlled vehicles on traffic flow and safety, J. Trans. Eng., 129 (2003), 146.

[15]

P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations," 3rd ed., Springer, Berlin, 2004.

[16]

K. Konishi, H. Kokame and K. Hirata, Coupled map car-following model and its delayed-feedback control, Phys. Rev. E 60 4000;

[17]

H. K. Lee, H.-W. Lee and D. Kim, Macroscopic traffic models from microscopic car-following models, Phys. Rev. E, 64 (2001), 056126. doi: 10.1103/PhysRevA.70.059902.

[18]

ChiYing Liang and Huei Peng, String stability analysis of adaptive cruise controlled vehicles, JSME Int. J., Ser. C, 43 (2000), 671.

[19]

P. Y. Li and A. Shrivastava, Traffic flow stability induced by constant time headway policy for adaptive cruise control vehicles, Transp. Res., Part C: Emerg. Technol., 10 (2002), 275.

[20]

S. Maerivoet and B. De Moor, Cellular automata models of road traffic, Phys. Reps., 419 (2005), 1.

[21]

T. Nagatani, The physics of traffic jams, Rep. Prog. Phys., 65 (2002), 1331-1386.

[22]

K. Nagel and M. Schreckenberg, A cellular automaton model for freeway traffic, J. Phys. I France, 2 (1992), 2221.

[23]

K. Nishinari, K. Sugawara, T. Kazama, A. Schadschneider and D. Chowdhury, Modelling of self-driven particles: Foraging ants and pedestrians, Physica A, 372 (2006), 132.

[24]

C. M. A. Pinto and M. Golubitsky, Central pattern generators for bipedal locomotion, J. Math. Biol., 53 (2006), 474-489. doi: 10.1007/s00285-006-0021-2.

[25]

A. Schadschneider, D. Chowdhury and K. Nishinari, "Stochastic Transport in Complex Systems," Elsevier, 2011

[26]

N. J. Suematsu, S. Nakata, A. Awazu and H. Nishimori, Collective behavior of inanimate boats, Phys. Rev. E, 81 (2010), 056210.

[27]

Yu. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, Sh. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam, New Journal of Phys., 10 (2008), 1-7. 033001.

[28]

A. Takamatsu, R. Tanaka and T. Fujii, Hidden symmetry in chains of biological coupled oscillators, Phys. Rev. Lett., 92 (2004), 228102-228105.

[29]

A. Takamatsu, R. Tanaka, T. Nakagaki, T. Fujii and I. Endo, Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum Plasmodial slime mold, Phys. Rev. Lett., 87 (2001), 078102-078105.

[30]

D. Tanaka, General chemotactic model of oscillators, Phys. Rev. Lett., 99 (2007), 134103.

[31]

D. E. Wolf, M. Schreckenberg and A. Bachem, "Traffic and Granular Flow," Word Scientific, Singapore, 1996.

show all references

References:
[1]

M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions," Dover Publications, Inc., New York, 1972. doi: 10.1119/1.1972842.

[2]

M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035.

[3]

A. Bose and P. Ioannou, Mixed manual/semi-automated traffic: A macroscopic analysis, Trasp. Res., Part C: Emerg. Technol., 11 (2003), 439. doi: 10.1016/j.trc.2002.04.001.

[4]

A. H. Cohen, P. J. Holmes and R. H. Rand, The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model, J. Math. Biol., 13 (1982), 345-369. doi: 10.1007/BF00276069.

[5]

L. C. Davis, Effect of adaptive cruise control systems on traffic flow, Phys. Rev. E, 69 (2004), 066110. doi: 10.1103/PhysRevE.69.066110.

[6]

Y. Gaididei, C. Gorria, R. Berkemer, A. Kawamoto, A. Kawamoto, T. Shiga, P. L. Christiansen, M. P. Sørensen and J. Starke, Traffic jam control by time-modulating the safety distance, Submitted.

[7]

Yu. B. Gaididei, R. Berkemer, J. G. Caputo, P. L. Christiansen, A. Kawamoto, T. Shiga, M. P. Sørensen and J. Starke, Analytical solutions of jam pattern formation on a ring for a class of optimal velocity traffic models, New Journal of Phys., 11 (2009), 073012 (1-19). doi: 10.1088/1367-2630/11/7/073012.

[8]

Yu. B. Gaididei, R. Berkemer, C. Gorria, P. L. Christiansen, A. Kawamoto, T. Shiga, M. P. Sørensen and J. Starke, Complex spatiotemporal behavior in a chain of one-way nonlinearly coupled elements, Discrete and Continuous Dynamical Systems. Series S., 4 (2011), 1167-1179. doi: 10.3934/dcdss.2011.4.1167.

[9]

C. W. Gardiner, "Handbook of Stochastic Method,'' 2nd ed. (Springer, Berlin), 1989. doi: 10.1007/978-3-662-02377-8.

[10]

D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys., 73 (2001), 1067-1141. doi: 10.1103/RevModPhys.73.1067.

[11]

V. In, A. Kho, J. D. Neff, A. Palacios, P. Longhini and B. K. Meadows, Experimental observation of multifrequency patterns in arrays of coupled nonlinear oscillators, Phys. Rev. Lett., 91 (2003), 244101-244104. doi: 10.1103/PhysRevLett.91.244101.

[12]

B. S. Kerner, "The physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory," Heidelberg: Springer, 2004.

[13]

B. S. Kerner, "Introduction to Modern Traffic Flow Theory and Control. The Long Road to Three-Phase Traffic Theory," Berlin: Springer, 2009.

[14]

S. Kikuchi, N. Uno and M. Tanaka, Impacts of shorter perception-reaction time of adapted cruise controlled vehicles on traffic flow and safety, J. Trans. Eng., 129 (2003), 146.

[15]

P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations," 3rd ed., Springer, Berlin, 2004.

[16]

K. Konishi, H. Kokame and K. Hirata, Coupled map car-following model and its delayed-feedback control, Phys. Rev. E 60 4000;

[17]

H. K. Lee, H.-W. Lee and D. Kim, Macroscopic traffic models from microscopic car-following models, Phys. Rev. E, 64 (2001), 056126. doi: 10.1103/PhysRevA.70.059902.

[18]

ChiYing Liang and Huei Peng, String stability analysis of adaptive cruise controlled vehicles, JSME Int. J., Ser. C, 43 (2000), 671.

[19]

P. Y. Li and A. Shrivastava, Traffic flow stability induced by constant time headway policy for adaptive cruise control vehicles, Transp. Res., Part C: Emerg. Technol., 10 (2002), 275.

[20]

S. Maerivoet and B. De Moor, Cellular automata models of road traffic, Phys. Reps., 419 (2005), 1.

[21]

T. Nagatani, The physics of traffic jams, Rep. Prog. Phys., 65 (2002), 1331-1386.

[22]

K. Nagel and M. Schreckenberg, A cellular automaton model for freeway traffic, J. Phys. I France, 2 (1992), 2221.

[23]

K. Nishinari, K. Sugawara, T. Kazama, A. Schadschneider and D. Chowdhury, Modelling of self-driven particles: Foraging ants and pedestrians, Physica A, 372 (2006), 132.

[24]

C. M. A. Pinto and M. Golubitsky, Central pattern generators for bipedal locomotion, J. Math. Biol., 53 (2006), 474-489. doi: 10.1007/s00285-006-0021-2.

[25]

A. Schadschneider, D. Chowdhury and K. Nishinari, "Stochastic Transport in Complex Systems," Elsevier, 2011

[26]

N. J. Suematsu, S. Nakata, A. Awazu and H. Nishimori, Collective behavior of inanimate boats, Phys. Rev. E, 81 (2010), 056210.

[27]

Yu. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, Sh. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam, New Journal of Phys., 10 (2008), 1-7. 033001.

[28]

A. Takamatsu, R. Tanaka and T. Fujii, Hidden symmetry in chains of biological coupled oscillators, Phys. Rev. Lett., 92 (2004), 228102-228105.

[29]

A. Takamatsu, R. Tanaka, T. Nakagaki, T. Fujii and I. Endo, Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum Plasmodial slime mold, Phys. Rev. Lett., 87 (2001), 078102-078105.

[30]

D. Tanaka, General chemotactic model of oscillators, Phys. Rev. Lett., 99 (2007), 134103.

[31]

D. E. Wolf, M. Schreckenberg and A. Bachem, "Traffic and Granular Flow," Word Scientific, Singapore, 1996.

[1]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic and Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[2]

Virginia Giorno, Serena Spina. On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 285-302. doi: 10.3934/mbe.2014.11.285

[3]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[4]

Yin Li, Xuerong Mao, Yazhi Song, Jian Tao. Optimal investment and proportional reinsurance strategy under the mean-reverting Ornstein-Uhlenbeck process and net profit condition. Journal of Industrial and Management Optimization, 2022, 18 (1) : 75-93. doi: 10.3934/jimo.2020143

[5]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[6]

Zeinab Karaki. Trend to the equilibrium for the Fokker-Planck system with an external magnetic field. Kinetic and Related Models, 2020, 13 (2) : 309-344. doi: 10.3934/krm.2020011

[7]

Tomasz Komorowski, Łukasz Stȩpień. Kinetic limit for a harmonic chain with a conservative Ornstein-Uhlenbeck stochastic perturbation. Kinetic and Related Models, 2018, 11 (2) : 239-278. doi: 10.3934/krm.2018013

[8]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[9]

Filomena Feo, Pablo Raúl Stinga, Bruno Volzone. The fractional nonlocal Ornstein-Uhlenbeck equation, Gaussian symmetrization and regularity. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3269-3298. doi: 10.3934/dcds.2018142

[10]

Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871

[11]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic and Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[12]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[13]

Annalisa Cesaroni, Matteo Novaga, Enrico Valdinoci. A symmetry result for the Ornstein-Uhlenbeck operator. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2451-2467. doi: 10.3934/dcds.2014.34.2451

[14]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics and Games, 2021, 8 (4) : 381-402. doi: 10.3934/jdg.2021013

[15]

Anton Arnold, Beatrice Signorello. Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium. Kinetic and Related Models, 2022, 15 (5) : 753-773. doi: 10.3934/krm.2022009

[16]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic and Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[17]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[18]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[19]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[20]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[Back to Top]