March  2013, 8(1): 291-325. doi: 10.3934/nhm.2013.8.291

The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system

1. 

Graduate School of Advanced Mathematical Science, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan

Received  March 2012 Revised  January 2013 Published  April 2013

The Gierer-Meinhardt system is a mathematical model describing the process of hydra regeneration. This system has a stationary solution with a stripe pattern on a rectangular domain, but numerical results suggest that such stripe pattern is unstable. In [8], Kolokolnikov et al. proved the existence of a positive eigenvalue, which is called an unstable eigenvalue, for a stationary solution with a stripe pattern by the NLEP method, which implies the instability of the stripe pattern. In addition, the uniqueness of the unstable eigenvalue was shown under some technical assumptions in [8]. In this paper, we prove the existence and uniqueness of an unstable eigenvalue by using the SLEP method without any extra conditions. We also prove the existence of a single-spike solution in one-dimension.
Citation: Kota Ikeda. The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system. Networks & Heterogeneous Media, 2013, 8 (1) : 291-325. doi: 10.3934/nhm.2013.8.291
References:
[1]

H. Brezis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations,", Universitext, (2011). Google Scholar

[2]

A. Doelman, R. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations,, Indiana Univ. Math. J., 50 (2001), 443. doi: 10.1512/iumj.2001.50.1873. Google Scholar

[3]

A. Doelman and H. van der Ploeg, Homoclinic stripe patterns,, SIAM J. Appl. Dyn. Syst., 1 (2002), 65. doi: 10.1137/S1111111101392831. Google Scholar

[4]

S. Ei and J. Wei, Dynamics of metastable localized patterns and its application to the interaction of spike solutions for the Gierer-Meinhardt systems in two spatial dimensions,, Japan J. Indust. Appl. Math., 19 (2002), 181. doi: 10.1007/BF03167453. Google Scholar

[5]

A. Gierer and H. Meinhardt, A theory of biological pattern formation,, Kybernetic, 12 (1972), 30. doi: 10.1007/BF00289234. Google Scholar

[6]

P. Hartman, "Ordinary Differential Equations,", Birkhäuser Boston, (1982). Google Scholar

[7]

D. Iron, M. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model,, Phys. D, 150 (2001), 25. doi: 10.1016/S0167-2789(00)00206-2. Google Scholar

[8]

T. Kolokolnikov, W. Sun, M. J. Ward and J. Wei, The stability of a stripe for the Gierer-Meinhardt model and the effect of saturation,, SIAM J. Appl. Dyn. Syst., 5 (2006), 313. doi: 10.1137/050635080. Google Scholar

[9]

S. Kondo and R. Asai, A reaction-diffusion wave on the marine angelfish Pomacanthus,, Nature, 376 (1995), 765. doi: 10.1038/376765a0. Google Scholar

[10]

S. Kondo, and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation,, Science, 329 (2010), 1616. Google Scholar

[11]

P. K. Maini, K. J. Painter and H. N. P. Chau, Spatial pattern formation in chemical and biological systems,, J. Chem. Soc. Faraday Trans., 93 (1997), 3601. doi: 10.1039/a702602a. Google Scholar

[12]

H. Meinhardt, "Models of Biological Pattern Formation,", Academic Press, (1982). Google Scholar

[13]

J. D. Murray, "Mathematical Biology,", Biomathematics, 19 (1989). doi: 10.1007/978-3-662-08539-4. Google Scholar

[14]

A. Nakamasu, G. Takahashi, A. Kanbe and S. Kondo, Interactions between zebrafish pigment cells responsible for the generation of Turing patterns,, Proceedings of the National Academy of Sciences, 106 (2009), 8429. doi: 10.1073/pnas.0808622106. Google Scholar

[15]

Y. Nakamura, C. D. Tsiairis, S. Özbek and T. W. Holstein, Autoregulatory and repressive inputs localize Hydra Wnt3 to the head organizer,, Proceedings of the National Academy of Sciences, 108 (2011), 9137. doi: 10.1073/pnas.1018109108. Google Scholar

[16]

Y. Nishiura, Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit,, in, 3 (1994), 25. Google Scholar

[17]

Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion equations,, SIAM J. Math. Anal., 18 (1987), 1726. doi: 10.1137/0518124. Google Scholar

[18]

H. Shoji, Y. Iwasa and S. Kondo, Stripes, spots, or reversed spots in two-dimensional Turing systems,, J. Theoret. Biol., 224 (2003), 339. doi: 10.1016/S0022-5193(03)00170-X. Google Scholar

[19]

I. Takagi, Point-condensation for a reaction-diffusion system,, J. Differential Equations, 61 (1986), 208. doi: 10.1016/0022-0396(86)90119-1. Google Scholar

[20]

M. Taniguchi, A uniform convergence theorem for singular limit eigenvalue problems,, Adv. Differential Equations, 8 (2003), 29. Google Scholar

[21]

M. Taniguchi and Y. Nishiura, Stability and characteristic wavelength of planar interfaces in the large diffusion limit of the inhibitor,, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 117. doi: 10.1017/S0308210500030638. Google Scholar

[22]

M. Taniguchi and Y. Nishiura, Instability of planar interfaces in reaction-diffusion systems,, SIAM J. Math. Anal., 25 (1994), 99. doi: 10.1137/S0036141092233500. Google Scholar

[23]

A. Turing, The chemical basis of morphogenesis,, Phil. Trans. R. Soc. Lond. B, 327 (1952), 37. doi: 10.1098/rstb.1952.0012. Google Scholar

[24]

M. J. Ward and J. Wei, Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability,, European J. Appl. Math., 13 (2002), 283. doi: 10.1017/S0956792501004442. Google Scholar

[25]

J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system,, J. Math. Pures Appl. (9), 83 (2004), 433. doi: 10.1016/j.matpur.2003.09.006. Google Scholar

[26]

J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case,, J. Nonlinear Sci., 11 (2001), 415. doi: 10.1007/s00332-001-0380-1. Google Scholar

show all references

References:
[1]

H. Brezis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations,", Universitext, (2011). Google Scholar

[2]

A. Doelman, R. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations,, Indiana Univ. Math. J., 50 (2001), 443. doi: 10.1512/iumj.2001.50.1873. Google Scholar

[3]

A. Doelman and H. van der Ploeg, Homoclinic stripe patterns,, SIAM J. Appl. Dyn. Syst., 1 (2002), 65. doi: 10.1137/S1111111101392831. Google Scholar

[4]

S. Ei and J. Wei, Dynamics of metastable localized patterns and its application to the interaction of spike solutions for the Gierer-Meinhardt systems in two spatial dimensions,, Japan J. Indust. Appl. Math., 19 (2002), 181. doi: 10.1007/BF03167453. Google Scholar

[5]

A. Gierer and H. Meinhardt, A theory of biological pattern formation,, Kybernetic, 12 (1972), 30. doi: 10.1007/BF00289234. Google Scholar

[6]

P. Hartman, "Ordinary Differential Equations,", Birkhäuser Boston, (1982). Google Scholar

[7]

D. Iron, M. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model,, Phys. D, 150 (2001), 25. doi: 10.1016/S0167-2789(00)00206-2. Google Scholar

[8]

T. Kolokolnikov, W. Sun, M. J. Ward and J. Wei, The stability of a stripe for the Gierer-Meinhardt model and the effect of saturation,, SIAM J. Appl. Dyn. Syst., 5 (2006), 313. doi: 10.1137/050635080. Google Scholar

[9]

S. Kondo and R. Asai, A reaction-diffusion wave on the marine angelfish Pomacanthus,, Nature, 376 (1995), 765. doi: 10.1038/376765a0. Google Scholar

[10]

S. Kondo, and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation,, Science, 329 (2010), 1616. Google Scholar

[11]

P. K. Maini, K. J. Painter and H. N. P. Chau, Spatial pattern formation in chemical and biological systems,, J. Chem. Soc. Faraday Trans., 93 (1997), 3601. doi: 10.1039/a702602a. Google Scholar

[12]

H. Meinhardt, "Models of Biological Pattern Formation,", Academic Press, (1982). Google Scholar

[13]

J. D. Murray, "Mathematical Biology,", Biomathematics, 19 (1989). doi: 10.1007/978-3-662-08539-4. Google Scholar

[14]

A. Nakamasu, G. Takahashi, A. Kanbe and S. Kondo, Interactions between zebrafish pigment cells responsible for the generation of Turing patterns,, Proceedings of the National Academy of Sciences, 106 (2009), 8429. doi: 10.1073/pnas.0808622106. Google Scholar

[15]

Y. Nakamura, C. D. Tsiairis, S. Özbek and T. W. Holstein, Autoregulatory and repressive inputs localize Hydra Wnt3 to the head organizer,, Proceedings of the National Academy of Sciences, 108 (2011), 9137. doi: 10.1073/pnas.1018109108. Google Scholar

[16]

Y. Nishiura, Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit,, in, 3 (1994), 25. Google Scholar

[17]

Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion equations,, SIAM J. Math. Anal., 18 (1987), 1726. doi: 10.1137/0518124. Google Scholar

[18]

H. Shoji, Y. Iwasa and S. Kondo, Stripes, spots, or reversed spots in two-dimensional Turing systems,, J. Theoret. Biol., 224 (2003), 339. doi: 10.1016/S0022-5193(03)00170-X. Google Scholar

[19]

I. Takagi, Point-condensation for a reaction-diffusion system,, J. Differential Equations, 61 (1986), 208. doi: 10.1016/0022-0396(86)90119-1. Google Scholar

[20]

M. Taniguchi, A uniform convergence theorem for singular limit eigenvalue problems,, Adv. Differential Equations, 8 (2003), 29. Google Scholar

[21]

M. Taniguchi and Y. Nishiura, Stability and characteristic wavelength of planar interfaces in the large diffusion limit of the inhibitor,, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 117. doi: 10.1017/S0308210500030638. Google Scholar

[22]

M. Taniguchi and Y. Nishiura, Instability of planar interfaces in reaction-diffusion systems,, SIAM J. Math. Anal., 25 (1994), 99. doi: 10.1137/S0036141092233500. Google Scholar

[23]

A. Turing, The chemical basis of morphogenesis,, Phil. Trans. R. Soc. Lond. B, 327 (1952), 37. doi: 10.1098/rstb.1952.0012. Google Scholar

[24]

M. J. Ward and J. Wei, Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability,, European J. Appl. Math., 13 (2002), 283. doi: 10.1017/S0956792501004442. Google Scholar

[25]

J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system,, J. Math. Pures Appl. (9), 83 (2004), 433. doi: 10.1016/j.matpur.2003.09.006. Google Scholar

[26]

J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case,, J. Nonlinear Sci., 11 (2001), 415. doi: 10.1007/s00332-001-0380-1. Google Scholar

[1]

Juncheng Wei, Matthias Winter. On the Gierer-Meinhardt system with precursors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 363-398. doi: 10.3934/dcds.2009.25.363

[2]

Siu-Long Lei. Adaptive method for spike solutions of Gierer-Meinhardt system on irregular domain. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 651-668. doi: 10.3934/dcdsb.2011.15.651

[3]

Manuel del Pino, Patricio Felmer, Michal Kowalczyk. Boundary spikes in the Gierer-Meinhardt system. Communications on Pure & Applied Analysis, 2002, 1 (4) : 437-456. doi: 10.3934/cpaa.2002.1.437

[4]

Henghui Zou. On global existence for the Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 583-591. doi: 10.3934/dcds.2015.35.583

[5]

Shin-Ichiro Ei, Kota Ikeda, Yasuhito Miyamoto. Dynamics of a boundary spike for the shadow Gierer-Meinhardt system. Communications on Pure & Applied Analysis, 2012, 11 (1) : 115-145. doi: 10.3934/cpaa.2012.11.115

[6]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[7]

Rui Peng, Xianfa Song, Lei Wei. Existence, nonexistence and uniqueness of positive stationary solutions of a singular Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4489-4505. doi: 10.3934/dcds.2017192

[8]

Kazuhiro Kurata, Kotaro Morimoto. Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1443-1482. doi: 10.3934/cpaa.2008.7.1443

[9]

Theodore Kolokolnikov, Michael J. Ward. Bifurcation of spike equilibria in the near-shadow Gierer-Meinhardt model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1033-1064. doi: 10.3934/dcdsb.2004.4.1033

[10]

Nabil T. Fadai, Michael J. Ward, Juncheng Wei. A time-delay in the activator kinetics enhances the stability of a spike solution to the gierer-meinhardt model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1431-1458. doi: 10.3934/dcdsb.2018158

[11]

Huan Gao, Zhibao Li, Haibin Zhang. A fast continuous method for the extreme eigenvalue problem. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1587-1599. doi: 10.3934/jimo.2017008

[12]

Yafeng Li, Guo Sun, Yiju Wang. A smoothing Broyden-like method for polyhedral cone constrained eigenvalue problem. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 529-537. doi: 10.3934/naco.2011.1.529

[13]

Xing Li, Chungen Shen, Lei-Hong Zhang. A projected preconditioned conjugate gradient method for the linear response eigenvalue problem. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 389-412. doi: 10.3934/naco.2018025

[14]

Tiexiang Li, Tsung-Ming Huang, Wen-Wei Lin, Jenn-Nan Wang. On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method. Inverse Problems & Imaging, 2018, 12 (4) : 1033-1054. doi: 10.3934/ipi.2018043

[15]

Qilong Zhai, Ran Zhang. Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 403-413. doi: 10.3934/dcdsb.2018091

[16]

Mohsen Tadi. A computational method for an inverse problem in a parabolic system. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 205-218. doi: 10.3934/dcdsb.2009.12.205

[17]

Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure & Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701

[18]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[19]

Giacomo Bocerani, Dimitri Mugnai. A fractional eigenvalue problem in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 619-629. doi: 10.3934/dcdss.2016016

[20]

David Colton, Yuk-J. Leung. On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems & Imaging, 2016, 10 (2) : 369-378. doi: 10.3934/ipi.2016004

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]