\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system

Abstract Related Papers Cited by
  • The Gierer-Meinhardt system is a mathematical model describing the process of hydra regeneration. This system has a stationary solution with a stripe pattern on a rectangular domain, but numerical results suggest that such stripe pattern is unstable. In [8], Kolokolnikov et al. proved the existence of a positive eigenvalue, which is called an unstable eigenvalue, for a stationary solution with a stripe pattern by the NLEP method, which implies the instability of the stripe pattern. In addition, the uniqueness of the unstable eigenvalue was shown under some technical assumptions in [8]. In this paper, we prove the existence and uniqueness of an unstable eigenvalue by using the SLEP method without any extra conditions. We also prove the existence of a single-spike solution in one-dimension.
    Mathematics Subject Classification: 35K57, 35K50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Brezis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations," Universitext, Springer, New York, 2011.

    [2]

    A. Doelman, R. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations, Indiana Univ. Math. J., 50 (2001), 443-507.doi: 10.1512/iumj.2001.50.1873.

    [3]

    A. Doelman and H. van der Ploeg, Homoclinic stripe patterns, SIAM J. Appl. Dyn. Syst., 1 (2002), 65-104 (electronic).doi: 10.1137/S1111111101392831.

    [4]

    S. Ei and J. Wei, Dynamics of metastable localized patterns and its application to the interaction of spike solutions for the Gierer-Meinhardt systems in two spatial dimensions, Japan J. Indust. Appl. Math., 19 (2002), 181-226.doi: 10.1007/BF03167453.

    [5]

    A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetic, 12 (1972), 30-39.doi: 10.1007/BF00289234.

    [6]

    P. Hartman, "Ordinary Differential Equations," Birkhäuser Boston, Mass., second edition, 1982.

    [7]

    D. Iron, M. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D, 150 (2001), 25-62.doi: 10.1016/S0167-2789(00)00206-2.

    [8]

    T. Kolokolnikov, W. Sun, M. J. Ward and J. Wei, The stability of a stripe for the Gierer-Meinhardt model and the effect of saturation, SIAM J. Appl. Dyn. Syst., 5 (2006), 313-363 (electronic).doi: 10.1137/050635080.

    [9]

    S. Kondo and R. Asai, A reaction-diffusion wave on the marine angelfish Pomacanthus, Nature, 376 (1995), 765-768.doi: 10.1038/376765a0.

    [10]

    S. Kondo, and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.

    [11]

    P. K. Maini, K. J. Painter and H. N. P. Chau, Spatial pattern formation in chemical and biological systems, J. Chem. Soc. Faraday Trans., 93 (1997), 3601-3610.doi: 10.1039/a702602a.

    [12]

    H. Meinhardt, "Models of Biological Pattern Formation," Academic Press, 1982.

    [13]

    J. D. Murray, "Mathematical Biology," Biomathematics, 19, Springer-Verlag, Berlin, 1989.doi: 10.1007/978-3-662-08539-4.

    [14]

    A. Nakamasu, G. Takahashi, A. Kanbe and S. Kondo, Interactions between zebrafish pigment cells responsible for the generation of Turing patterns, Proceedings of the National Academy of Sciences, 106, (2009), 8429-8434.doi: 10.1073/pnas.0808622106.

    [15]

    Y. Nakamura, C. D. Tsiairis, S. Özbek and T. W. Holstein, Autoregulatory and repressive inputs localize Hydra Wnt3 to the head organizer, Proceedings of the National Academy of Sciences, 108, (2011), 9137-9142.doi: 10.1073/pnas.1018109108.

    [16]

    Y. Nishiura, Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit, in "Dynamics Reported (New Series)", 3 (1994), Springer, Berlin, 25-103.

    [17]

    Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion equations, SIAM J. Math. Anal., 18 (1987), 1726-1770. Translated in J. Soviet Math., 45 (1989), 1205-1218.doi: 10.1137/0518124.

    [18]

    H. Shoji, Y. Iwasa and S. Kondo, Stripes, spots, or reversed spots in two-dimensional Turing systems, J. Theoret. Biol., 224 (2003), 339-350.doi: 10.1016/S0022-5193(03)00170-X.

    [19]

    I. Takagi, Point-condensation for a reaction-diffusion system, J. Differential Equations, 61 (1986), 208-249.doi: 10.1016/0022-0396(86)90119-1.

    [20]

    M. Taniguchi, A uniform convergence theorem for singular limit eigenvalue problems, Adv. Differential Equations, 8 (2003), 29-54.

    [21]

    M. Taniguchi and Y. Nishiura, Stability and characteristic wavelength of planar interfaces in the large diffusion limit of the inhibitor, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 117-145.doi: 10.1017/S0308210500030638.

    [22]

    M. Taniguchi and Y. Nishiura, Instability of planar interfaces in reaction-diffusion systems, SIAM J. Math. Anal., 25 (1994), 99-134.doi: 10.1137/S0036141092233500.

    [23]

    A. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. B, 327 (1952), 37-72.doi: 10.1098/rstb.1952.0012.

    [24]

    M. J. Ward and J. Wei, Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability, European J. Appl. Math., 13 (2002), 283-320.doi: 10.1017/S0956792501004442.

    [25]

    J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl. (9), 83 (2004), 433-476.doi: 10.1016/j.matpur.2003.09.006.

    [26]

    J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, J. Nonlinear Sci., 11 (2001), 415-458.doi: 10.1007/s00332-001-0380-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return