March  2013, 8(1): 343-378. doi: 10.3934/nhm.2013.8.343

Wavespeed selection in the heterogeneous Fisher equation: Slowly varying inhomogeneity

1. 

School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

Received  March 2012 Revised  February 2013 Published  April 2013

We adapt (ray-based) geometrical optics approaches to encompass the formal asymptotic analysis of front propagation in a Fisher-KPP equation with slowly varying spatial inhomogeneities. The wavespeed is shown to be selected by two distinct (and fully constructive) mechanisms, depending on whether the source term is an increasing or decreasing function of the spatial variable. Canonical inner problems, analogous to those arising in the geometrical theory of diffraction, are formulated to give refined expressions for the wavefront location. Additional phenomena, notably the initiation of new fronts and the transitions that occur when the source term is a non-monotonic function of space, are shown to be amenable to the same asymptotic approaches.
Citation: John R. King. Wavespeed selection in the heterogeneous Fisher equation: Slowly varying inhomogeneity. Networks & Heterogeneous Media, 2013, 8 (1) : 343-378. doi: 10.3934/nhm.2013.8.343
References:
[1]

J. K. Cohen and R. M. Lewis, A ray method for the asymptotic solution of the diffusion equation,, IMA J. Appl. Math., 3 (1967), 266.  doi: 10.1093/imamat/3.3.266.  Google Scholar

[2]

C. M. Cuesta and J. R. King, Front propagation a heterogeneous Fisher equation: The homogeneous case is non-generic,, Q. J. Mech. Appl. Math., 63 (2010), 521.  doi: 10.1093/qjmam/hbq017.  Google Scholar

[3]

U. Ebert and W. van Saarloos, Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts,, Physica D, 146 (2000), 1.  doi: 10.1016/S0167-2789(00)00068-3.  Google Scholar

[4]

L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations,, Indiana Uni. Math. J., 38 (1989), 141.  doi: 10.1512/iumj.1989.38.38007.  Google Scholar

[5]

J. Smoller, "Linear Elastic Waves,", Cambridge University Press, (2001).  doi: 10.1017/CBO9780511755415.  Google Scholar

[6]

M. Freidlin, Limit theorems for large deviations and reaction-diffusion equations,, Ann. Prob., 13 (1985), 639.  doi: 10.1214/aop/1176992901.  Google Scholar

[7]

John King, "Mathematical Aspects of Semiconductor Process Modelling,", DPhil Thesis, (1986).   Google Scholar

[8]

J. R. King, High concentration arsenic diffusion in crystalline silicon: An asymptotic analysis,, IMA J. Appl. Math., 38 (1987), 87.  doi: 10.1093/imamat/38.2.87.  Google Scholar

[9]

V. Méndez, J. Fort, H. G. Rotstein and S. Fedotov, Speed of reaction-diffusion fronts in spatially heterogeneous media,, Phys. Rev. E, 68 (2003).  doi: 10.1103/PhysRevE.68.041105.  Google Scholar

[10]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", American Mathematical Society, (1994).   Google Scholar

[11]

J. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.  doi: 10.1137/S0036144599364296.  Google Scholar

show all references

References:
[1]

J. K. Cohen and R. M. Lewis, A ray method for the asymptotic solution of the diffusion equation,, IMA J. Appl. Math., 3 (1967), 266.  doi: 10.1093/imamat/3.3.266.  Google Scholar

[2]

C. M. Cuesta and J. R. King, Front propagation a heterogeneous Fisher equation: The homogeneous case is non-generic,, Q. J. Mech. Appl. Math., 63 (2010), 521.  doi: 10.1093/qjmam/hbq017.  Google Scholar

[3]

U. Ebert and W. van Saarloos, Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts,, Physica D, 146 (2000), 1.  doi: 10.1016/S0167-2789(00)00068-3.  Google Scholar

[4]

L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations,, Indiana Uni. Math. J., 38 (1989), 141.  doi: 10.1512/iumj.1989.38.38007.  Google Scholar

[5]

J. Smoller, "Linear Elastic Waves,", Cambridge University Press, (2001).  doi: 10.1017/CBO9780511755415.  Google Scholar

[6]

M. Freidlin, Limit theorems for large deviations and reaction-diffusion equations,, Ann. Prob., 13 (1985), 639.  doi: 10.1214/aop/1176992901.  Google Scholar

[7]

John King, "Mathematical Aspects of Semiconductor Process Modelling,", DPhil Thesis, (1986).   Google Scholar

[8]

J. R. King, High concentration arsenic diffusion in crystalline silicon: An asymptotic analysis,, IMA J. Appl. Math., 38 (1987), 87.  doi: 10.1093/imamat/38.2.87.  Google Scholar

[9]

V. Méndez, J. Fort, H. G. Rotstein and S. Fedotov, Speed of reaction-diffusion fronts in spatially heterogeneous media,, Phys. Rev. E, 68 (2003).  doi: 10.1103/PhysRevE.68.041105.  Google Scholar

[10]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", American Mathematical Society, (1994).   Google Scholar

[11]

J. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.  doi: 10.1137/S0036144599364296.  Google Scholar

[1]

Shangbing Ai, Wenzhang Huang, Zhi-An Wang. Reaction, diffusion and chemotaxis in wave propagation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 1-21. doi: 10.3934/dcdsb.2015.20.1

[2]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[3]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[4]

Matthieu Alfaro, Thomas Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks & Heterogeneous Media, 2016, 11 (3) : 369-393. doi: 10.3934/nhm.2016001

[5]

Luisa Malaguti, Cristina Marcelli, Serena Matucci. Continuous dependence in front propagation of convective reaction-diffusion equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1083-1098. doi: 10.3934/cpaa.2010.9.1083

[6]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[7]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[8]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[9]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[10]

Yuncheng You. Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1415-1445. doi: 10.3934/cpaa.2011.10.1415

[11]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114

[12]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[13]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[14]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[15]

C.B. Muratov. A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 867-892. doi: 10.3934/dcdsb.2004.4.867

[16]

Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133

[17]

Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471

[18]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[19]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[20]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]