\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Traveling fronts of pyramidal shapes in competition-diffusion systems

Abstract / Introduction Related Papers Cited by
  • It is well known that a competition-diffusion system has a one-dimensional traveling front. This paper studies traveling front solutions of pyramidal shapes in a competition-diffusion system in $\mathbb{R}^N$ with $N\geq 2$. By using a multi-scale method, we construct a suitable pair of a supersolution and a subsolution, and find a pyramidal traveling front solution between them.
    Mathematics Subject Classification: Primary: 35C07; Secondary: 35K57.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system, J. Dynam. Differential Equations, 23 (2011), 353-363.doi: 10.1007/s10884-011-9214-5.

    [2]

    J. K. Hale, "Ordinary Differential Equations," Wiley-Interscience, 1969.

    [3]

    F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), 1069-1096.doi: 10.3934/dcds.2005.13.1069.

    [4]

    F. Hamel, R. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), 75-92.

    [5]

    M. Haragus and A. Scheel, Corner defects in almost planar interface propagation, Ann. I. H. Poincaré, 23 (2006), 283-329.doi: 10.1016/j.anihpc.2005.03.003.

    [6]

    Y. Hosono, Traveling waves for a diffusive Lotka-Volterra competition model. I. Singular perturbations, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 79-95.doi: 10.3934/dcdsb.2003.3.79.

    [7]

    Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363.doi: 10.1137/S0036141093244556.

    [8]

    Y. Kan-on and Q. Fang, Stability of monotone travelling waves for competition-diffusion equations, Japan J. Indust. Appl. Math., 13 (1996), 343-349.doi: 10.1007/BF03167252.

    [9]

    Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal traveling fronts in the Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1031-1054.doi: 10.1017/S0308210510001253.

    [10]

    H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204-233.doi: 10.1016/j.jde.2004.06.011.

    [11]

    H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006), 819-832.doi: 10.3934/dcds.2006.15.819.

    [12]

    M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations," Springer-Verlag, Berlin, 1984.doi: 10.1007/978-1-4612-5282-5.

    [13]

    D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1972), 979-1000.

    [14]

    M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344.doi: 10.1137/060661788.

    [15]

    M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 246 (2009), 2103-2130.doi: 10.1016/j.jde.2008.06.037.

    [16]

    M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst., 32 (2012), 1011-1046.doi: 10.3934/dcds.2012.32.1011.

    [17]

    A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems," Translations of Mathematical Monographs, 140, American Mathematical Society, Providence, RI}, 1994.

    [18]

    Z.-C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 32 (2012), 2339-2374.doi: 10.3934/dcds.2012.32.2339.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(152) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return