March  2013, 8(1): 397-432. doi: 10.3934/nhm.2013.8.397

Pattern forming instabilities driven by non-diffusive interactions

1. 

Advanced Semiconductor Materials Lithography, ASML B.V., Office 06.C.006, 5500AH Veldhoven, Netherlands

2. 

Westfälische-Wilhelms Universität Münster, Applied Mathematics Münster, Einsteinstr. 62, D-48149 Münster, Germany

3. 

Universität Bonn, Institut für Angewandte Mathematik, Endenicher Allee 60, D-53155 Bonn, Germany

Received  January 2012 Revised  March 2013 Published  April 2013

In analogy to the analysis of minimal conditions for the formation of diffusion driven instabilities in the sense of Turing, in this paper minimal conditions for a class of kinetic equations with mass conservation are discussed, whose solutions show patterns with a characteristic wavelength. The related linearized systems are analyzed, and the minimal number of equations is derived, which is needed for specific patterns to occur.
Citation: Ivano Primi, Angela Stevens, Juan J. L. Velázquez. Pattern forming instabilities driven by non-diffusive interactions. Networks and Heterogeneous Media, 2013, 8 (1) : 397-432. doi: 10.3934/nhm.2013.8.397
References:
[1]

M. S. Alber, M. A. Kiskowski and Y. Jing, Lattice gas cellular automaton model for rippling and aggregation in myxobacteria, Physica D, 191 (2004), 343-358.

[2]

U. Börner and M. Bär, Pattern formation in a reaction-advection model with delay: A continuum approach to myxobacterial rippling, Annalen der Physik, 13 (2004), 432-441. doi: 10.1002/andp.200410086.

[3]

U. Börner, A. Deutsch, H. Reichenbach and M. Bär, Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions, Physical Review Letters, 89 (2002), 078101.

[4]

O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models I. Linear Theory, J. Math. Biol., 36 (1998), 349-388. doi: 10.1007/s002850050104.

[5]

O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models II. Nonlinear theory, J. Math. Biol., 43 (2001), 157-189. doi: 10.1007/s002850170002.

[6]

M. Dworkin and D. Kaiser eds., "Myxobacteria II," American Society for Microbiology (AMS) Press, 1993.

[7]

R. Erban and H. J. Hwang, Global existence results for complex hyperbolic models of bacterial chemotaxis, DCDS-B, 6 (2006), 1239-1260. doi: 10.3934/dcdsb.2006.6.1239.

[8]

R. Erban and H. Othmer, From signal transduction to spatial pattern formation in E.coli : A paradigm for multi-scale modeling in biology, Multiscale Modeling and Simulation, 3 (2005), 362-394. doi: 10.1137/040603565.

[9]

E. Geigant, "Nichtlineare Integro-Differential-Gleichungen zur Modellierung interaktiver Musterbildungsprozesse auf $S^{1}$," (German) [Nonlinear Integro-Differential Equations for the Modelling of Interactive Pattern Formation Processes on $S^{1}$], Bonner Mathematische Schriften 323 Ph.D thesis, University of Bonn, 1999.

[10]

E. Geigant, On peak and periodic solutions of an integro-differential equation on $S^1$, in "Geometric Analysis and Nonlinear Partial Differential Equations", Springer-Verlag, Berlin, (2003), 463-474.

[11]

E. Geigant and M. Stoll, Bifurcation analysis of an orientational aggregation model, J. Math. Biol., 46 (2003), 537-563. doi: 10.1007/s00285-002-0187-1.

[12]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12, (1972), 30-39. doi: 10.1007/BF00289234.

[13]

T. Hillen, A Turing model with correlated random walk, J. Math. Biol., 35 (1996), 49-72. doi: 10.1007/s002850050042.

[14]

O. Igoshin, J. Neu and G. Oster, Developmental waves in Myxobacteria: A novel pattern formation mechanism, Phys. Rev. E, 7 (2004), 1-11.

[15]

K. Kang, B. Perthame, A. Stevens and J. J. L. Velázquez, An Integro-differential equation model for alignment and orientational aggregation, J. of Differential Equations, 246 (2009), 1387-1421. doi: 10.1016/j.jde.2008.11.006.

[16]

T. Kato, "Perturbation Theory for Linear Operators," Springer-Verlag, Berlin, 1980. doi: 10.1007/978-3-642-66282-9.

[17]

F. Lutscher and A. Stevens, Emerging patterns in a hyperbolic model for locally interacting cell systems, J. Nonlinear Science, 12 (2002), 619-640. doi: 10.1007/s00332-002-0510-4.

[18]

H. Meinhardt, Morphogenesis of lines and nets, Differentiation, 6 (1976), 117-123.

[19]

J. D. Murray, "Mathematical Biology I and II," Interdisciplinary Applied Mathematics 17 and 18, Springer-Verlag, New York, 2002/03.

[20]

H. Othmer, S. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392.

[21]

B. Perthame, "Transport Equations in Biology," Frontiers in Mathematics, Birkhäuser-Verlag, Basel, 2007.

[22]

B. Pfistner, "Ein Eindimensionales Modell Zum Schwarmverhalten der Myxobakterien Unter Besonderer Berücksichtigung der Randzonenentwicklung," (German) [A one-dimensional model on the swarming behavior of Myxobacteria, with special consideration of the development of the boundary zone], Ph.D thesis, University of Bonn, 1992.

[23]

I. Primi, A. Stevens and J. J. L. Velázquez, Mass-selection in alignment models with non-deterministic effects, Communication in PDE, 34 (2009), 419-456. doi: 10.1080/03605300902797171.

[24]

M. Rotenberg, Transport theory for growing cell populations, J. Theor. Biology, 103 (1983), 181-199. doi: 10.1016/0022-5193(83)90024-3.

[25]

J. Scheuer, "Pattern Formation in Reaction-Drift and Diffusion Systems," Diploma thesis, University of Heidelberg, 2009.

[26]

H. R. Thieme, "Mathematics in Population Biology," Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003.

[27]

A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237 (1952), 37-72.

show all references

References:
[1]

M. S. Alber, M. A. Kiskowski and Y. Jing, Lattice gas cellular automaton model for rippling and aggregation in myxobacteria, Physica D, 191 (2004), 343-358.

[2]

U. Börner and M. Bär, Pattern formation in a reaction-advection model with delay: A continuum approach to myxobacterial rippling, Annalen der Physik, 13 (2004), 432-441. doi: 10.1002/andp.200410086.

[3]

U. Börner, A. Deutsch, H. Reichenbach and M. Bär, Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions, Physical Review Letters, 89 (2002), 078101.

[4]

O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models I. Linear Theory, J. Math. Biol., 36 (1998), 349-388. doi: 10.1007/s002850050104.

[5]

O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models II. Nonlinear theory, J. Math. Biol., 43 (2001), 157-189. doi: 10.1007/s002850170002.

[6]

M. Dworkin and D. Kaiser eds., "Myxobacteria II," American Society for Microbiology (AMS) Press, 1993.

[7]

R. Erban and H. J. Hwang, Global existence results for complex hyperbolic models of bacterial chemotaxis, DCDS-B, 6 (2006), 1239-1260. doi: 10.3934/dcdsb.2006.6.1239.

[8]

R. Erban and H. Othmer, From signal transduction to spatial pattern formation in E.coli : A paradigm for multi-scale modeling in biology, Multiscale Modeling and Simulation, 3 (2005), 362-394. doi: 10.1137/040603565.

[9]

E. Geigant, "Nichtlineare Integro-Differential-Gleichungen zur Modellierung interaktiver Musterbildungsprozesse auf $S^{1}$," (German) [Nonlinear Integro-Differential Equations for the Modelling of Interactive Pattern Formation Processes on $S^{1}$], Bonner Mathematische Schriften 323 Ph.D thesis, University of Bonn, 1999.

[10]

E. Geigant, On peak and periodic solutions of an integro-differential equation on $S^1$, in "Geometric Analysis and Nonlinear Partial Differential Equations", Springer-Verlag, Berlin, (2003), 463-474.

[11]

E. Geigant and M. Stoll, Bifurcation analysis of an orientational aggregation model, J. Math. Biol., 46 (2003), 537-563. doi: 10.1007/s00285-002-0187-1.

[12]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12, (1972), 30-39. doi: 10.1007/BF00289234.

[13]

T. Hillen, A Turing model with correlated random walk, J. Math. Biol., 35 (1996), 49-72. doi: 10.1007/s002850050042.

[14]

O. Igoshin, J. Neu and G. Oster, Developmental waves in Myxobacteria: A novel pattern formation mechanism, Phys. Rev. E, 7 (2004), 1-11.

[15]

K. Kang, B. Perthame, A. Stevens and J. J. L. Velázquez, An Integro-differential equation model for alignment and orientational aggregation, J. of Differential Equations, 246 (2009), 1387-1421. doi: 10.1016/j.jde.2008.11.006.

[16]

T. Kato, "Perturbation Theory for Linear Operators," Springer-Verlag, Berlin, 1980. doi: 10.1007/978-3-642-66282-9.

[17]

F. Lutscher and A. Stevens, Emerging patterns in a hyperbolic model for locally interacting cell systems, J. Nonlinear Science, 12 (2002), 619-640. doi: 10.1007/s00332-002-0510-4.

[18]

H. Meinhardt, Morphogenesis of lines and nets, Differentiation, 6 (1976), 117-123.

[19]

J. D. Murray, "Mathematical Biology I and II," Interdisciplinary Applied Mathematics 17 and 18, Springer-Verlag, New York, 2002/03.

[20]

H. Othmer, S. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392.

[21]

B. Perthame, "Transport Equations in Biology," Frontiers in Mathematics, Birkhäuser-Verlag, Basel, 2007.

[22]

B. Pfistner, "Ein Eindimensionales Modell Zum Schwarmverhalten der Myxobakterien Unter Besonderer Berücksichtigung der Randzonenentwicklung," (German) [A one-dimensional model on the swarming behavior of Myxobacteria, with special consideration of the development of the boundary zone], Ph.D thesis, University of Bonn, 1992.

[23]

I. Primi, A. Stevens and J. J. L. Velázquez, Mass-selection in alignment models with non-deterministic effects, Communication in PDE, 34 (2009), 419-456. doi: 10.1080/03605300902797171.

[24]

M. Rotenberg, Transport theory for growing cell populations, J. Theor. Biology, 103 (1983), 181-199. doi: 10.1016/0022-5193(83)90024-3.

[25]

J. Scheuer, "Pattern Formation in Reaction-Drift and Diffusion Systems," Diploma thesis, University of Heidelberg, 2009.

[26]

H. R. Thieme, "Mathematics in Population Biology," Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003.

[27]

A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237 (1952), 37-72.

[1]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[2]

Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022103

[3]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[4]

Hongfei Xu, Jinfeng Wang, Xuelian Xu. Dynamics and pattern formation in a cross-diffusion model with stage structure for predators. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4473-4489. doi: 10.3934/dcdsb.2021237

[5]

Martin Baurmann, Wolfgang Ebenhöh, Ulrike Feudel. Turing instabilities and pattern formation in a benthic nutrient-microorganism system. Mathematical Biosciences & Engineering, 2004, 1 (1) : 111-130. doi: 10.3934/mbe.2004.1.111

[6]

Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597

[7]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031

[8]

H. Malchow, F.M. Hilker, S.V. Petrovskii. Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 705-711. doi: 10.3934/dcdsb.2004.4.705

[9]

David Damanik, Jake Fillman, Milivoje Lukic, William Yessen. Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1009-1023. doi: 10.3934/dcdss.2016039

[10]

Yuri B. Gaididei, Christian Marschler, Mads Peter Sørensen, Peter L. Christiansen, Jens Juul Rasmussen. Pattern formation in flows of asymmetrically interacting particles: Peristaltic pedestrian dynamics as a case study. Evolution Equations and Control Theory, 2019, 8 (1) : 73-100. doi: 10.3934/eect.2019005

[11]

Qi Wang, Ling Jin, Zengyan Zhang. Global well-posedness, pattern formation and spiky stationary solutions in a Beddington–DeAngelis competition system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2105-2134. doi: 10.3934/dcds.2020108

[12]

Julien Barré, Pierre Degond, Diane Peurichard, Ewelina Zatorska. Modelling pattern formation through differential repulsion. Networks and Heterogeneous Media, 2020, 15 (3) : 307-352. doi: 10.3934/nhm.2020021

[13]

Julien Cividini. Pattern formation in 2D traffic flows. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395

[14]

Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555

[15]

Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809

[16]

Taylan Sengul, Shouhong Wang. Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2609-2639. doi: 10.3934/cpaa.2014.13.2609

[17]

Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217

[18]

Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021, 8 (2) : 213-240. doi: 10.3934/jcd.2021010

[19]

Kimun Ryu, Wonlyul Ko. On dynamics and stationary pattern formations of a diffusive predator-prey system with hunting cooperation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022015

[20]

Jim Wiseman. Symbolic dynamics from signed matrices. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (4)

[Back to Top]