\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pattern forming instabilities driven by non-diffusive interactions

Abstract / Introduction Related Papers Cited by
  • In analogy to the analysis of minimal conditions for the formation of diffusion driven instabilities in the sense of Turing, in this paper minimal conditions for a class of kinetic equations with mass conservation are discussed, whose solutions show patterns with a characteristic wavelength. The related linearized systems are analyzed, and the minimal number of equations is derived, which is needed for specific patterns to occur.
    Mathematics Subject Classification: Primary: 35L45, 35P20, 35B20, 35B36; Secondary: 92C15, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. S. Alber, M. A. Kiskowski and Y. Jing, Lattice gas cellular automaton model for rippling and aggregation in myxobacteria, Physica D, 191 (2004), 343-358.

    [2]

    U. Börner and M. Bär, Pattern formation in a reaction-advection model with delay: A continuum approach to myxobacterial rippling, Annalen der Physik, 13 (2004), 432-441.doi: 10.1002/andp.200410086.

    [3]

    U. Börner, A. Deutsch, H. Reichenbach and M. Bär, Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions, Physical Review Letters, 89 (2002), 078101.

    [4]

    O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models I. Linear Theory, J. Math. Biol., 36 (1998), 349-388.doi: 10.1007/s002850050104.

    [5]

    O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models II. Nonlinear theory, J. Math. Biol., 43 (2001), 157-189.doi: 10.1007/s002850170002.

    [6]

    M. Dworkin and D. Kaiser eds., "Myxobacteria II," American Society for Microbiology (AMS) Press, 1993.

    [7]

    R. Erban and H. J. Hwang, Global existence results for complex hyperbolic models of bacterial chemotaxis, DCDS-B, 6 (2006), 1239-1260.doi: 10.3934/dcdsb.2006.6.1239.

    [8]

    R. Erban and H. Othmer, From signal transduction to spatial pattern formation in E.coli : A paradigm for multi-scale modeling in biology, Multiscale Modeling and Simulation, 3 (2005), 362-394.doi: 10.1137/040603565.

    [9]

    E. Geigant, "Nichtlineare Integro-Differential-Gleichungen zur Modellierung interaktiver Musterbildungsprozesse auf $S^{1}$," (German) [Nonlinear Integro-Differential Equations for the Modelling of Interactive Pattern Formation Processes on $S^{1}$], Bonner Mathematische Schriften 323 Ph.D thesis, University of Bonn, 1999.

    [10]

    E. Geigant, On peak and periodic solutions of an integro-differential equation on $S^1$, in "Geometric Analysis and Nonlinear Partial Differential Equations", Springer-Verlag, Berlin, (2003), 463-474.

    [11]

    E. Geigant and M. Stoll, Bifurcation analysis of an orientational aggregation model, J. Math. Biol., 46 (2003), 537-563.doi: 10.1007/s00285-002-0187-1.

    [12]

    A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12, (1972), 30-39.doi: 10.1007/BF00289234.

    [13]

    T. Hillen, A Turing model with correlated random walk, J. Math. Biol., 35 (1996), 49-72.doi: 10.1007/s002850050042.

    [14]

    O. Igoshin, J. Neu and G. Oster, Developmental waves in Myxobacteria: A novel pattern formation mechanism, Phys. Rev. E, 7 (2004), 1-11.

    [15]

    K. Kang, B. Perthame, A. Stevens and J. J. L. Velázquez, An Integro-differential equation model for alignment and orientational aggregation, J. of Differential Equations, 246 (2009), 1387-1421.doi: 10.1016/j.jde.2008.11.006.

    [16]

    T. Kato, "Perturbation Theory for Linear Operators," Springer-Verlag, Berlin, 1980.doi: 10.1007/978-3-642-66282-9.

    [17]

    F. Lutscher and A. Stevens, Emerging patterns in a hyperbolic model for locally interacting cell systems, J. Nonlinear Science, 12 (2002), 619-640.doi: 10.1007/s00332-002-0510-4.

    [18]

    H. Meinhardt, Morphogenesis of lines and nets, Differentiation, 6 (1976), 117-123.

    [19]

    J. D. Murray, "Mathematical Biology I and II," Interdisciplinary Applied Mathematics 17 and 18, Springer-Verlag, New York, 2002/03.

    [20]

    H. Othmer, S. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298.doi: 10.1007/BF00277392.

    [21]

    B. Perthame, "Transport Equations in Biology," Frontiers in Mathematics, Birkhäuser-Verlag, Basel, 2007.

    [22]

    B. Pfistner, "Ein Eindimensionales Modell Zum Schwarmverhalten der Myxobakterien Unter Besonderer Berücksichtigung der Randzonenentwicklung," (German) [A one-dimensional model on the swarming behavior of Myxobacteria, with special consideration of the development of the boundary zone], Ph.D thesis, University of Bonn, 1992.

    [23]

    I. Primi, A. Stevens and J. J. L. Velázquez, Mass-selection in alignment models with non-deterministic effects, Communication in PDE, 34 (2009), 419-456.doi: 10.1080/03605300902797171.

    [24]

    M. Rotenberg, Transport theory for growing cell populations, J. Theor. Biology, 103 (1983), 181-199.doi: 10.1016/0022-5193(83)90024-3.

    [25]

    J. Scheuer, "Pattern Formation in Reaction-Drift and Diffusion Systems," Diploma thesis, University of Heidelberg, 2009.

    [26]

    H. R. Thieme, "Mathematics in Population Biology," Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003.

    [27]

    A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237 (1952), 37-72.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(204) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return