June  2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433

General constrained conservation laws. Application to pedestrian flow modeling

1. 

Univ. Paris Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS, F-75205 Paris, France

2. 

INRIA Sophia Antipolis - Méditerranée, EPI OPALE, 2004, route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex

3. 

UPMC Univ Paris 06 and CNRS UMR 7598, Laboratoire J.-L. Lions, 75005 Paris

Received  July 2012 Revised  November 2012 Published  May 2013

We extend the results on conservation laws with local flux constraint obtained in [2, 12] to general (non-concave) flux functions and non-classical solutions arising in pedestrian flow modeling [15]. We first provide a well-posedness result based on wave-front tracking approximations and the Kružhkov doubling of variable technique for a general conservation law with constrained flux. This provides a sound basis for dealing with non-classical solutions accounting for panic states in the pedestrian flow model introduced by Colombo and Rosini [15]. In particular, flux constraints are used here to model the presence of doors and obstacles. We propose a "front-tracking" finite volume scheme allowing to sharply capture classical and non-classical discontinuities. Numerical simulations illustrating the Braess paradox are presented as validation of the method.
Citation: Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks & Heterogeneous Media, 2013, 8 (2) : 433-463. doi: 10.3934/nhm.2013.8.433
References:
[1]

B. Andreianov and N. Seguin, Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes,, Discrete Contin. Dyn. Syst., 32 (2012), 1939.  doi: 10.3934/dcds.2012.32.1939.  Google Scholar

[2]

B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws,, With supplementary material available online, 115 (2010), 609.  doi: 10.1007/s00211-009-0286-7.  Google Scholar

[3]

B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux,, Arch. Ration. Mech. Anal., 201 (2011), 27.  doi: 10.1007/s00205-010-0389-4.  Google Scholar

[4]

D. Braess, Über ein Paradoxon aus der Verkehrsplanung,, Unternehmensforschung, 12 (1968), 258.   Google Scholar

[5]

A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,", Oxford Lecture Series in Mathematics and its Applications, (2000).   Google Scholar

[6]

R. Bürger, A. García, K. H. Karlsen and J. D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux,, J. Engrg. Math., 60 (2008), 387.  doi: 10.1007/s10665-007-9148-4.  Google Scholar

[7]

C. Cancès and N. Seguin, Error estimate for Godunov approximation of locally constrained conservation laws,, SIAM J. Numer. Anal., 50 (2012), 3036.  doi: 10.1137/110836912.  Google Scholar

[8]

C. Chalons, Numerical approximation of a macroscopic model of pedestrian flows,, SIAM J. Sci. Comput., 29 (2007), 539.  doi: 10.1137/050641211.  Google Scholar

[9]

C. Chalons and P. Goatin, Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling,, Interfaces Free Bound., 10 (2008), 197.  doi: 10.4171/IFB/186.  Google Scholar

[10]

G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws,, Arch. Ration. Mech. Anal., 147 (1999), 89.  doi: 10.1007/s002050050146.  Google Scholar

[11]

P. Colella, Glimm's method for gas dynamics,, SIAM J. Sci. Statist. Comput., 3 (1982), 76.  doi: 10.1137/0903007.  Google Scholar

[12]

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint,, J. Differential Equations, 234 (2007), 654.  doi: 10.1016/j.jde.2006.10.014.  Google Scholar

[13]

R. M. Colombo, P. Goatin and M. D. Rosini, Conservation laws with unilateral constraints in traffic modeling,, Applied and Industrial Mathematics in Italy III, 82 (2010), 244.  doi: 10.1142/9789814280303_0022.  Google Scholar

[14]

_______, On the modelling and management of traffic,, ESAIM Math. Model. Numer. Anal., 45 (2011), 853.  doi: 10.1051/m2an/2010105.  Google Scholar

[15]

R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks,, Math. Methods Appl. Sci., 28 (2005), 1553.  doi: 10.1002/mma.624.  Google Scholar

[16]

_______, Existence of nonclassical solutions in a pedestrian flow model,, Nonl. Analysis: RWA, 10 (2009), 2716.  doi: 10.1016/j.nonrwa.2008.08.002.  Google Scholar

[17]

M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings,, Proc. AMS, 78 (1980), 385.  doi: 10.1090/S0002-9939-1980-0553381-X.  Google Scholar

[18]

C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law,, J. Math. Anal. Appl., 38 (1972), 33.  doi: 10.1016/0022-247X(72)90114-X.  Google Scholar

[19]

M. L. Delle Monache and P. Goatin, Scalar conservation laws with moving density constraints arising in traffic flow modeling,, INRIA Research Report, (8119).   Google Scholar

[20]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods,, in, VII (2000), 713.   Google Scholar

[21]

M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow,, J. Math. Anal. Appl., 378 (2011), 634.  doi: 10.1016/j.jmaa.2011.01.033.  Google Scholar

[22]

M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models,", AIMS Series on Applied Mathematics, 1 (2006).   Google Scholar

[23]

I. M. Gel'fand, Some problems in the theory of quasi-linear equations,, Uspehi Mat. Nauk, 14 (1959), 87.   Google Scholar

[24]

D. Helbing, A. Johansson, and H. Z. Al-Abideen, Dynamics of crowd disasters: An empirical study,, Physical Review E, 75 (2007).  doi: 10.1103/PhysRevE.75.046109.  Google Scholar

[25]

H. Holden and N. H. Risebro, "Front Tracking for Hyperbolic Conservation Laws,", Applied Mathematical Sciences, (2002).  doi: 10.1007/978-3-642-56139-9.  Google Scholar

[26]

S. N. Kružhkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.   Google Scholar

[27]

P. G. LeFloch, "Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves,", Lectures in Mathematics ETH Zürich, (2002).  doi: 10.1007/978-3-0348-8150-0.  Google Scholar

[28]

T. P. Liu, The Riemann problem for general systems of conservation laws,, J. Differential Equations, 18 (1975), 218.  doi: 10.1016/0022-0396(75)90091-1.  Google Scholar

[29]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, "Weak and Measure-Valued Solutions to Evolutionary PDEs,", Applied Mathematics and Mathematical Computation, 13 (1996).   Google Scholar

[30]

E. Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws,, J. Hyperbolic Differ. Equ., 4 (2007), 729.  doi: 10.1142/S0219891607001343.  Google Scholar

[31]

M. D. Rosini, Nonclassical interactions portrait in a macroscopic pedestrian flow model,, J. Differential Equations, 246 (2009), 408.  doi: 10.1016/j.jde.2008.03.018.  Google Scholar

[32]

B. Temple, Global solution of the Cauchy problem for a class of $2\times 2$ nonstrictly hyperbolic conservation laws,, Adv. in Appl. Math., 3 (1982), 335.  doi: 10.1016/S0196-8858(82)80010-9.  Google Scholar

[33]

A. I. Vol'pert, Spaces $BV$ and quasilinear equations,, Mat. Sb. (N.S.), 73(115) (1967), 255.   Google Scholar

show all references

References:
[1]

B. Andreianov and N. Seguin, Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes,, Discrete Contin. Dyn. Syst., 32 (2012), 1939.  doi: 10.3934/dcds.2012.32.1939.  Google Scholar

[2]

B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws,, With supplementary material available online, 115 (2010), 609.  doi: 10.1007/s00211-009-0286-7.  Google Scholar

[3]

B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux,, Arch. Ration. Mech. Anal., 201 (2011), 27.  doi: 10.1007/s00205-010-0389-4.  Google Scholar

[4]

D. Braess, Über ein Paradoxon aus der Verkehrsplanung,, Unternehmensforschung, 12 (1968), 258.   Google Scholar

[5]

A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,", Oxford Lecture Series in Mathematics and its Applications, (2000).   Google Scholar

[6]

R. Bürger, A. García, K. H. Karlsen and J. D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux,, J. Engrg. Math., 60 (2008), 387.  doi: 10.1007/s10665-007-9148-4.  Google Scholar

[7]

C. Cancès and N. Seguin, Error estimate for Godunov approximation of locally constrained conservation laws,, SIAM J. Numer. Anal., 50 (2012), 3036.  doi: 10.1137/110836912.  Google Scholar

[8]

C. Chalons, Numerical approximation of a macroscopic model of pedestrian flows,, SIAM J. Sci. Comput., 29 (2007), 539.  doi: 10.1137/050641211.  Google Scholar

[9]

C. Chalons and P. Goatin, Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling,, Interfaces Free Bound., 10 (2008), 197.  doi: 10.4171/IFB/186.  Google Scholar

[10]

G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws,, Arch. Ration. Mech. Anal., 147 (1999), 89.  doi: 10.1007/s002050050146.  Google Scholar

[11]

P. Colella, Glimm's method for gas dynamics,, SIAM J. Sci. Statist. Comput., 3 (1982), 76.  doi: 10.1137/0903007.  Google Scholar

[12]

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint,, J. Differential Equations, 234 (2007), 654.  doi: 10.1016/j.jde.2006.10.014.  Google Scholar

[13]

R. M. Colombo, P. Goatin and M. D. Rosini, Conservation laws with unilateral constraints in traffic modeling,, Applied and Industrial Mathematics in Italy III, 82 (2010), 244.  doi: 10.1142/9789814280303_0022.  Google Scholar

[14]

_______, On the modelling and management of traffic,, ESAIM Math. Model. Numer. Anal., 45 (2011), 853.  doi: 10.1051/m2an/2010105.  Google Scholar

[15]

R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks,, Math. Methods Appl. Sci., 28 (2005), 1553.  doi: 10.1002/mma.624.  Google Scholar

[16]

_______, Existence of nonclassical solutions in a pedestrian flow model,, Nonl. Analysis: RWA, 10 (2009), 2716.  doi: 10.1016/j.nonrwa.2008.08.002.  Google Scholar

[17]

M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings,, Proc. AMS, 78 (1980), 385.  doi: 10.1090/S0002-9939-1980-0553381-X.  Google Scholar

[18]

C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law,, J. Math. Anal. Appl., 38 (1972), 33.  doi: 10.1016/0022-247X(72)90114-X.  Google Scholar

[19]

M. L. Delle Monache and P. Goatin, Scalar conservation laws with moving density constraints arising in traffic flow modeling,, INRIA Research Report, (8119).   Google Scholar

[20]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods,, in, VII (2000), 713.   Google Scholar

[21]

M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow,, J. Math. Anal. Appl., 378 (2011), 634.  doi: 10.1016/j.jmaa.2011.01.033.  Google Scholar

[22]

M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models,", AIMS Series on Applied Mathematics, 1 (2006).   Google Scholar

[23]

I. M. Gel'fand, Some problems in the theory of quasi-linear equations,, Uspehi Mat. Nauk, 14 (1959), 87.   Google Scholar

[24]

D. Helbing, A. Johansson, and H. Z. Al-Abideen, Dynamics of crowd disasters: An empirical study,, Physical Review E, 75 (2007).  doi: 10.1103/PhysRevE.75.046109.  Google Scholar

[25]

H. Holden and N. H. Risebro, "Front Tracking for Hyperbolic Conservation Laws,", Applied Mathematical Sciences, (2002).  doi: 10.1007/978-3-642-56139-9.  Google Scholar

[26]

S. N. Kružhkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.   Google Scholar

[27]

P. G. LeFloch, "Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves,", Lectures in Mathematics ETH Zürich, (2002).  doi: 10.1007/978-3-0348-8150-0.  Google Scholar

[28]

T. P. Liu, The Riemann problem for general systems of conservation laws,, J. Differential Equations, 18 (1975), 218.  doi: 10.1016/0022-0396(75)90091-1.  Google Scholar

[29]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, "Weak and Measure-Valued Solutions to Evolutionary PDEs,", Applied Mathematics and Mathematical Computation, 13 (1996).   Google Scholar

[30]

E. Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws,, J. Hyperbolic Differ. Equ., 4 (2007), 729.  doi: 10.1142/S0219891607001343.  Google Scholar

[31]

M. D. Rosini, Nonclassical interactions portrait in a macroscopic pedestrian flow model,, J. Differential Equations, 246 (2009), 408.  doi: 10.1016/j.jde.2008.03.018.  Google Scholar

[32]

B. Temple, Global solution of the Cauchy problem for a class of $2\times 2$ nonstrictly hyperbolic conservation laws,, Adv. in Appl. Math., 3 (1982), 335.  doi: 10.1016/S0196-8858(82)80010-9.  Google Scholar

[33]

A. I. Vol'pert, Spaces $BV$ and quasilinear equations,, Mat. Sb. (N.S.), 73(115) (1967), 255.   Google Scholar

[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[3]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[4]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[5]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[6]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[7]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[8]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[11]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[12]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[13]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[14]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[15]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[16]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[17]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[18]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[19]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[20]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (22)

[Back to Top]