June  2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433

General constrained conservation laws. Application to pedestrian flow modeling

1. 

Univ. Paris Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS, F-75205 Paris, France

2. 

INRIA Sophia Antipolis - Méditerranée, EPI OPALE, 2004, route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex

3. 

UPMC Univ Paris 06 and CNRS UMR 7598, Laboratoire J.-L. Lions, 75005 Paris

Received  July 2012 Revised  November 2012 Published  May 2013

We extend the results on conservation laws with local flux constraint obtained in [2, 12] to general (non-concave) flux functions and non-classical solutions arising in pedestrian flow modeling [15]. We first provide a well-posedness result based on wave-front tracking approximations and the Kružhkov doubling of variable technique for a general conservation law with constrained flux. This provides a sound basis for dealing with non-classical solutions accounting for panic states in the pedestrian flow model introduced by Colombo and Rosini [15]. In particular, flux constraints are used here to model the presence of doors and obstacles. We propose a "front-tracking" finite volume scheme allowing to sharply capture classical and non-classical discontinuities. Numerical simulations illustrating the Braess paradox are presented as validation of the method.
Citation: Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks & Heterogeneous Media, 2013, 8 (2) : 433-463. doi: 10.3934/nhm.2013.8.433
References:
[1]

B. Andreianov and N. Seguin, Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes,, Discrete Contin. Dyn. Syst., 32 (2012), 1939.  doi: 10.3934/dcds.2012.32.1939.  Google Scholar

[2]

B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws,, With supplementary material available online, 115 (2010), 609.  doi: 10.1007/s00211-009-0286-7.  Google Scholar

[3]

B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux,, Arch. Ration. Mech. Anal., 201 (2011), 27.  doi: 10.1007/s00205-010-0389-4.  Google Scholar

[4]

D. Braess, Über ein Paradoxon aus der Verkehrsplanung,, Unternehmensforschung, 12 (1968), 258.   Google Scholar

[5]

A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,", Oxford Lecture Series in Mathematics and its Applications, (2000).   Google Scholar

[6]

R. Bürger, A. García, K. H. Karlsen and J. D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux,, J. Engrg. Math., 60 (2008), 387.  doi: 10.1007/s10665-007-9148-4.  Google Scholar

[7]

C. Cancès and N. Seguin, Error estimate for Godunov approximation of locally constrained conservation laws,, SIAM J. Numer. Anal., 50 (2012), 3036.  doi: 10.1137/110836912.  Google Scholar

[8]

C. Chalons, Numerical approximation of a macroscopic model of pedestrian flows,, SIAM J. Sci. Comput., 29 (2007), 539.  doi: 10.1137/050641211.  Google Scholar

[9]

C. Chalons and P. Goatin, Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling,, Interfaces Free Bound., 10 (2008), 197.  doi: 10.4171/IFB/186.  Google Scholar

[10]

G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws,, Arch. Ration. Mech. Anal., 147 (1999), 89.  doi: 10.1007/s002050050146.  Google Scholar

[11]

P. Colella, Glimm's method for gas dynamics,, SIAM J. Sci. Statist. Comput., 3 (1982), 76.  doi: 10.1137/0903007.  Google Scholar

[12]

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint,, J. Differential Equations, 234 (2007), 654.  doi: 10.1016/j.jde.2006.10.014.  Google Scholar

[13]

R. M. Colombo, P. Goatin and M. D. Rosini, Conservation laws with unilateral constraints in traffic modeling,, Applied and Industrial Mathematics in Italy III, 82 (2010), 244.  doi: 10.1142/9789814280303_0022.  Google Scholar

[14]

_______, On the modelling and management of traffic,, ESAIM Math. Model. Numer. Anal., 45 (2011), 853.  doi: 10.1051/m2an/2010105.  Google Scholar

[15]

R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks,, Math. Methods Appl. Sci., 28 (2005), 1553.  doi: 10.1002/mma.624.  Google Scholar

[16]

_______, Existence of nonclassical solutions in a pedestrian flow model,, Nonl. Analysis: RWA, 10 (2009), 2716.  doi: 10.1016/j.nonrwa.2008.08.002.  Google Scholar

[17]

M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings,, Proc. AMS, 78 (1980), 385.  doi: 10.1090/S0002-9939-1980-0553381-X.  Google Scholar

[18]

C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law,, J. Math. Anal. Appl., 38 (1972), 33.  doi: 10.1016/0022-247X(72)90114-X.  Google Scholar

[19]

M. L. Delle Monache and P. Goatin, Scalar conservation laws with moving density constraints arising in traffic flow modeling,, INRIA Research Report, (8119).   Google Scholar

[20]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods,, in, VII (2000), 713.   Google Scholar

[21]

M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow,, J. Math. Anal. Appl., 378 (2011), 634.  doi: 10.1016/j.jmaa.2011.01.033.  Google Scholar

[22]

M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models,", AIMS Series on Applied Mathematics, 1 (2006).   Google Scholar

[23]

I. M. Gel'fand, Some problems in the theory of quasi-linear equations,, Uspehi Mat. Nauk, 14 (1959), 87.   Google Scholar

[24]

D. Helbing, A. Johansson, and H. Z. Al-Abideen, Dynamics of crowd disasters: An empirical study,, Physical Review E, 75 (2007).  doi: 10.1103/PhysRevE.75.046109.  Google Scholar

[25]

H. Holden and N. H. Risebro, "Front Tracking for Hyperbolic Conservation Laws,", Applied Mathematical Sciences, (2002).  doi: 10.1007/978-3-642-56139-9.  Google Scholar

[26]

S. N. Kružhkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.   Google Scholar

[27]

P. G. LeFloch, "Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves,", Lectures in Mathematics ETH Zürich, (2002).  doi: 10.1007/978-3-0348-8150-0.  Google Scholar

[28]

T. P. Liu, The Riemann problem for general systems of conservation laws,, J. Differential Equations, 18 (1975), 218.  doi: 10.1016/0022-0396(75)90091-1.  Google Scholar

[29]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, "Weak and Measure-Valued Solutions to Evolutionary PDEs,", Applied Mathematics and Mathematical Computation, 13 (1996).   Google Scholar

[30]

E. Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws,, J. Hyperbolic Differ. Equ., 4 (2007), 729.  doi: 10.1142/S0219891607001343.  Google Scholar

[31]

M. D. Rosini, Nonclassical interactions portrait in a macroscopic pedestrian flow model,, J. Differential Equations, 246 (2009), 408.  doi: 10.1016/j.jde.2008.03.018.  Google Scholar

[32]

B. Temple, Global solution of the Cauchy problem for a class of $2\times 2$ nonstrictly hyperbolic conservation laws,, Adv. in Appl. Math., 3 (1982), 335.  doi: 10.1016/S0196-8858(82)80010-9.  Google Scholar

[33]

A. I. Vol'pert, Spaces $BV$ and quasilinear equations,, Mat. Sb. (N.S.), 73(115) (1967), 255.   Google Scholar

show all references

References:
[1]

B. Andreianov and N. Seguin, Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes,, Discrete Contin. Dyn. Syst., 32 (2012), 1939.  doi: 10.3934/dcds.2012.32.1939.  Google Scholar

[2]

B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws,, With supplementary material available online, 115 (2010), 609.  doi: 10.1007/s00211-009-0286-7.  Google Scholar

[3]

B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux,, Arch. Ration. Mech. Anal., 201 (2011), 27.  doi: 10.1007/s00205-010-0389-4.  Google Scholar

[4]

D. Braess, Über ein Paradoxon aus der Verkehrsplanung,, Unternehmensforschung, 12 (1968), 258.   Google Scholar

[5]

A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,", Oxford Lecture Series in Mathematics and its Applications, (2000).   Google Scholar

[6]

R. Bürger, A. García, K. H. Karlsen and J. D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux,, J. Engrg. Math., 60 (2008), 387.  doi: 10.1007/s10665-007-9148-4.  Google Scholar

[7]

C. Cancès and N. Seguin, Error estimate for Godunov approximation of locally constrained conservation laws,, SIAM J. Numer. Anal., 50 (2012), 3036.  doi: 10.1137/110836912.  Google Scholar

[8]

C. Chalons, Numerical approximation of a macroscopic model of pedestrian flows,, SIAM J. Sci. Comput., 29 (2007), 539.  doi: 10.1137/050641211.  Google Scholar

[9]

C. Chalons and P. Goatin, Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling,, Interfaces Free Bound., 10 (2008), 197.  doi: 10.4171/IFB/186.  Google Scholar

[10]

G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws,, Arch. Ration. Mech. Anal., 147 (1999), 89.  doi: 10.1007/s002050050146.  Google Scholar

[11]

P. Colella, Glimm's method for gas dynamics,, SIAM J. Sci. Statist. Comput., 3 (1982), 76.  doi: 10.1137/0903007.  Google Scholar

[12]

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint,, J. Differential Equations, 234 (2007), 654.  doi: 10.1016/j.jde.2006.10.014.  Google Scholar

[13]

R. M. Colombo, P. Goatin and M. D. Rosini, Conservation laws with unilateral constraints in traffic modeling,, Applied and Industrial Mathematics in Italy III, 82 (2010), 244.  doi: 10.1142/9789814280303_0022.  Google Scholar

[14]

_______, On the modelling and management of traffic,, ESAIM Math. Model. Numer. Anal., 45 (2011), 853.  doi: 10.1051/m2an/2010105.  Google Scholar

[15]

R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks,, Math. Methods Appl. Sci., 28 (2005), 1553.  doi: 10.1002/mma.624.  Google Scholar

[16]

_______, Existence of nonclassical solutions in a pedestrian flow model,, Nonl. Analysis: RWA, 10 (2009), 2716.  doi: 10.1016/j.nonrwa.2008.08.002.  Google Scholar

[17]

M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings,, Proc. AMS, 78 (1980), 385.  doi: 10.1090/S0002-9939-1980-0553381-X.  Google Scholar

[18]

C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law,, J. Math. Anal. Appl., 38 (1972), 33.  doi: 10.1016/0022-247X(72)90114-X.  Google Scholar

[19]

M. L. Delle Monache and P. Goatin, Scalar conservation laws with moving density constraints arising in traffic flow modeling,, INRIA Research Report, (8119).   Google Scholar

[20]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods,, in, VII (2000), 713.   Google Scholar

[21]

M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow,, J. Math. Anal. Appl., 378 (2011), 634.  doi: 10.1016/j.jmaa.2011.01.033.  Google Scholar

[22]

M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models,", AIMS Series on Applied Mathematics, 1 (2006).   Google Scholar

[23]

I. M. Gel'fand, Some problems in the theory of quasi-linear equations,, Uspehi Mat. Nauk, 14 (1959), 87.   Google Scholar

[24]

D. Helbing, A. Johansson, and H. Z. Al-Abideen, Dynamics of crowd disasters: An empirical study,, Physical Review E, 75 (2007).  doi: 10.1103/PhysRevE.75.046109.  Google Scholar

[25]

H. Holden and N. H. Risebro, "Front Tracking for Hyperbolic Conservation Laws,", Applied Mathematical Sciences, (2002).  doi: 10.1007/978-3-642-56139-9.  Google Scholar

[26]

S. N. Kružhkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.   Google Scholar

[27]

P. G. LeFloch, "Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves,", Lectures in Mathematics ETH Zürich, (2002).  doi: 10.1007/978-3-0348-8150-0.  Google Scholar

[28]

T. P. Liu, The Riemann problem for general systems of conservation laws,, J. Differential Equations, 18 (1975), 218.  doi: 10.1016/0022-0396(75)90091-1.  Google Scholar

[29]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, "Weak and Measure-Valued Solutions to Evolutionary PDEs,", Applied Mathematics and Mathematical Computation, 13 (1996).   Google Scholar

[30]

E. Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws,, J. Hyperbolic Differ. Equ., 4 (2007), 729.  doi: 10.1142/S0219891607001343.  Google Scholar

[31]

M. D. Rosini, Nonclassical interactions portrait in a macroscopic pedestrian flow model,, J. Differential Equations, 246 (2009), 408.  doi: 10.1016/j.jde.2008.03.018.  Google Scholar

[32]

B. Temple, Global solution of the Cauchy problem for a class of $2\times 2$ nonstrictly hyperbolic conservation laws,, Adv. in Appl. Math., 3 (1982), 335.  doi: 10.1016/S0196-8858(82)80010-9.  Google Scholar

[33]

A. I. Vol'pert, Spaces $BV$ and quasilinear equations,, Mat. Sb. (N.S.), 73(115) (1967), 255.   Google Scholar

[1]

Pierre Degond, Cécile Appert-Rolland, Julien Pettré, Guy Theraulaz. Vision-based macroscopic pedestrian models. Kinetic & Related Models, 2013, 6 (4) : 809-839. doi: 10.3934/krm.2013.6.809

[2]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[3]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[4]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[5]

Simone Göttlich, Stephan Knapp, Peter Schillen. A pedestrian flow model with stochastic velocities: Microscopic and macroscopic approaches. Kinetic & Related Models, 2018, 11 (6) : 1333-1358. doi: 10.3934/krm.2018052

[6]

Dirk Hartmann, Isabella von Sivers. Structured first order conservation models for pedestrian dynamics. Networks & Heterogeneous Media, 2013, 8 (4) : 985-1007. doi: 10.3934/nhm.2013.8.985

[7]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[8]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[9]

Martin Frank, Weiran Sun. Fractional diffusion limits of non-classical transport equations. Kinetic & Related Models, 2018, 11 (6) : 1503-1526. doi: 10.3934/krm.2018059

[10]

Martin Frank, Thierry Goudon. On a generalized Boltzmann equation for non-classical particle transport. Kinetic & Related Models, 2010, 3 (3) : 395-407. doi: 10.3934/krm.2010.3.395

[11]

Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control & Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401

[12]

Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks & Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010

[13]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[14]

Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra. Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks & Heterogeneous Media, 2013, 8 (4) : 969-984. doi: 10.3934/nhm.2013.8.969

[15]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[16]

Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107

[17]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[18]

Darko Mitrovic, Ivan Ivec. A generalization of $H$-measures and application on purely fractional scalar conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1617-1627. doi: 10.3934/cpaa.2011.10.1617

[19]

Tomás Caraballo, Antonio M. Márquez-Durán, Rivero Felipe. Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1817-1833. doi: 10.3934/dcdsb.2017108

[20]

Felipe Rivero. Time dependent perturbation in a non-autonomous non-classical parabolic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 209-221. doi: 10.3934/dcdsb.2013.18.209

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (13)

[Back to Top]