• Previous Article
    Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation
  • NHM Home
  • This Issue
  • Next Article
    General constrained conservation laws. Application to pedestrian flow modeling
June  2013, 8(2): 465-479. doi: 10.3934/nhm.2013.8.465

Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation

1. 

Department of Mathematics, National University of Singapore, Singapore 117543, Singapore

Received  October 2012 Revised  November 2012 Published  May 2013

The purpose of this paper is to study asymptotic behaviors of the Green function of the linearized compressible Navier-Stokes equation. Liu, T.-P. and Zeng, Y. obtained a point-wise estimate for the Green function of the linearized compressible Navier-Stokes equation in [Comm. Pure Appl. Math. 47, 1053--1082 (1994)] and [Mem. Amer. Math. Soc. 125 (1997), no. 599]. In this paper, we propose a new methodology to investigate point-wise behavior of the Green function of the compressible Navier-Stokes equation. This methodology consists of complex analysis method and weighted energy estimate which was originally proposed by Liu, T.-P. and Yu, S.-H. in [Comm. Pure Appl. Math., 57, 1543--1608 (2004)] for the Boltzmann equation. We will apply this methodology to get a point-wise estimate of the Green function for large $t>0$.
Citation: Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks and Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465
References:
[1]

I.-L. Chern and T.-P. Liu, Convergence to diffusion waves of solutions for viscous conservation laws, Comm. Math. Phys., 110 (1987), 503-517. doi: 10.1007/BF01212425.

[2]

I.-L. Chern and T.-P. Liu, Erratum: "Convergence to difision waves of solutions for viscous conservation laws," Comm. Math. Phys., 120 (1989), 525-527.

[3]

S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. SOC. Edinburgh Sect. A, 106 (1987), 169-194. doi: 10.1017/S0308210500018308.

[4]

T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Mem. American Mathematical Society, 56 (1985).

[5]

T.-P. Liu, Interactions of nonlinear hyperbolic waves, in "Nonlinear Analysis" (Taipei, 1989), World Sci. Publ., Teaneck, New Jersey, (1991), 171-183.

[6]

T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for the one-dimensional Boltzmann equation, Comm. Pure Appl. Math., 57 (2004), 1543-1608. doi: 10.1002/cpa.20011.

[7]

T.-P. Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc., 125 (1997).

[8]

T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofuid dynamics, Japan J. Appl. Math., 1 (1984), 435-457. doi: 10.1007/BF03167068.

[9]

S. Zheng and W. Shen, Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems, Scientia Sinica Ser. A, 30 (1987), 1133-1149.

[10]

Y. Zeng, $L^1$ asymptotic behavior of compressible, isentropic, viscous 1-D flow, Comm. Pure Appl. Math., 47 (1994), 1053-1082. doi: 10.1002/cpa.3160470804.

show all references

References:
[1]

I.-L. Chern and T.-P. Liu, Convergence to diffusion waves of solutions for viscous conservation laws, Comm. Math. Phys., 110 (1987), 503-517. doi: 10.1007/BF01212425.

[2]

I.-L. Chern and T.-P. Liu, Erratum: "Convergence to difision waves of solutions for viscous conservation laws," Comm. Math. Phys., 120 (1989), 525-527.

[3]

S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. SOC. Edinburgh Sect. A, 106 (1987), 169-194. doi: 10.1017/S0308210500018308.

[4]

T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Mem. American Mathematical Society, 56 (1985).

[5]

T.-P. Liu, Interactions of nonlinear hyperbolic waves, in "Nonlinear Analysis" (Taipei, 1989), World Sci. Publ., Teaneck, New Jersey, (1991), 171-183.

[6]

T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for the one-dimensional Boltzmann equation, Comm. Pure Appl. Math., 57 (2004), 1543-1608. doi: 10.1002/cpa.20011.

[7]

T.-P. Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc., 125 (1997).

[8]

T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofuid dynamics, Japan J. Appl. Math., 1 (1984), 435-457. doi: 10.1007/BF03167068.

[9]

S. Zheng and W. Shen, Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems, Scientia Sinica Ser. A, 30 (1987), 1133-1149.

[10]

Y. Zeng, $L^1$ asymptotic behavior of compressible, isentropic, viscous 1-D flow, Comm. Pure Appl. Math., 47 (1994), 1053-1082. doi: 10.1002/cpa.3160470804.

[1]

Linglong Du, Haitao Wang. Pointwise wave behavior of the Navier-Stokes equations in half space. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1349-1363. doi: 10.3934/dcds.2018055

[2]

Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263

[3]

Xinhua Zhao, Zilai Li. Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1421-1448. doi: 10.3934/cpaa.2020052

[4]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic and Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[5]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[6]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[7]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[8]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[9]

Anhui Gu, Boling Guo, Bixiang Wang. Long term behavior of random Navier-Stokes equations driven by colored noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2495-2532. doi: 10.3934/dcdsb.2020020

[10]

Shujuan Lü, Zeting Liu, Zhaosheng Feng. Hermite spectral method for Long-Short wave equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 941-964. doi: 10.3934/dcdsb.2018255

[11]

Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic and Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010

[12]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[13]

Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079

[14]

Anhui Gu, Kening Lu, Bixiang Wang. Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 185-218. doi: 10.3934/dcds.2019008

[15]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[16]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[17]

Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

[18]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[19]

Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46

[20]

Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]