Advanced Search
Article Contents
Article Contents

Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation

Abstract Related Papers Cited by
  • The purpose of this paper is to study asymptotic behaviors of the Green function of the linearized compressible Navier-Stokes equation. Liu, T.-P. and Zeng, Y. obtained a point-wise estimate for the Green function of the linearized compressible Navier-Stokes equation in [Comm. Pure Appl. Math. 47, 1053--1082 (1994)] and [Mem. Amer. Math. Soc. 125 (1997), no. 599]. In this paper, we propose a new methodology to investigate point-wise behavior of the Green function of the compressible Navier-Stokes equation. This methodology consists of complex analysis method and weighted energy estimate which was originally proposed by Liu, T.-P. and Yu, S.-H. in [Comm. Pure Appl. Math., 57, 1543--1608 (2004)] for the Boltzmann equation. We will apply this methodology to get a point-wise estimate of the Green function for large $t>0$.
    Mathematics Subject Classification: Primary: 35Q30, 35B40; Secondary: 35C15.


    \begin{equation} \\ \end{equation}
  • [1]

    I.-L. Chern and T.-P. Liu, Convergence to diffusion waves of solutions for viscous conservation laws, Comm. Math. Phys., 110 (1987), 503-517.doi: 10.1007/BF01212425.


    I.-L. Chern and T.-P. Liu, Erratum: "Convergence to difision waves of solutions for viscous conservation laws," Comm. Math. Phys., 120 (1989), 525-527.


    S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. SOC. Edinburgh Sect. A, 106 (1987), 169-194.doi: 10.1017/S0308210500018308.


    T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Mem. American Mathematical Society, 56 (1985).


    T.-P. Liu, Interactions of nonlinear hyperbolic waves, in "Nonlinear Analysis" (Taipei, 1989), World Sci. Publ., Teaneck, New Jersey, (1991), 171-183.


    T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for the one-dimensional Boltzmann equation, Comm. Pure Appl. Math., 57 (2004), 1543-1608.doi: 10.1002/cpa.20011.


    T.-P. Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc., 125 (1997).


    T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofuid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.doi: 10.1007/BF03167068.


    S. Zheng and W. Shen, Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems, Scientia Sinica Ser. A, 30 (1987), 1133-1149.


    Y. Zeng, $L^1$ asymptotic behavior of compressible, isentropic, viscous 1-D flow, Comm. Pure Appl. Math., 47 (1994), 1053-1082.doi: 10.1002/cpa.3160470804.

  • 加载中

Article Metrics

HTML views() PDF downloads(61) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint