• Previous Article
    Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation
  • NHM Home
  • This Issue
  • Next Article
    General constrained conservation laws. Application to pedestrian flow modeling
June  2013, 8(2): 465-479. doi: 10.3934/nhm.2013.8.465

Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation

1. 

Department of Mathematics, National University of Singapore, Singapore 117543, Singapore

Received  October 2012 Revised  November 2012 Published  May 2013

The purpose of this paper is to study asymptotic behaviors of the Green function of the linearized compressible Navier-Stokes equation. Liu, T.-P. and Zeng, Y. obtained a point-wise estimate for the Green function of the linearized compressible Navier-Stokes equation in [Comm. Pure Appl. Math. 47, 1053--1082 (1994)] and [Mem. Amer. Math. Soc. 125 (1997), no. 599]. In this paper, we propose a new methodology to investigate point-wise behavior of the Green function of the compressible Navier-Stokes equation. This methodology consists of complex analysis method and weighted energy estimate which was originally proposed by Liu, T.-P. and Yu, S.-H. in [Comm. Pure Appl. Math., 57, 1543--1608 (2004)] for the Boltzmann equation. We will apply this methodology to get a point-wise estimate of the Green function for large $t>0$.
Citation: Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465
References:
[1]

I.-L. Chern and T.-P. Liu, Convergence to diffusion waves of solutions for viscous conservation laws,, Comm. Math. Phys., 110 (1987), 503.  doi: 10.1007/BF01212425.  Google Scholar

[2]

I.-L. Chern and T.-P. Liu, Erratum: "Convergence to difision waves of solutions for viscous conservation laws,", Comm. Math. Phys., 120 (1989), 525.   Google Scholar

[3]

S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications,, Proc. Roy. SOC. Edinburgh Sect. A, 106 (1987), 169.  doi: 10.1017/S0308210500018308.  Google Scholar

[4]

T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws,, Mem. American Mathematical Society, 56 (1985).   Google Scholar

[5]

T.-P. Liu, Interactions of nonlinear hyperbolic waves,, in, (1991), 171.   Google Scholar

[6]

T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for the one-dimensional Boltzmann equation,, Comm. Pure Appl. Math., 57 (2004), 1543.  doi: 10.1002/cpa.20011.  Google Scholar

[7]

T.-P. Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws,, Mem. Amer. Math. Soc., 125 (1997).   Google Scholar

[8]

T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofuid dynamics,, Japan J. Appl. Math., 1 (1984), 435.  doi: 10.1007/BF03167068.  Google Scholar

[9]

S. Zheng and W. Shen, Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems,, Scientia Sinica Ser. A, 30 (1987), 1133.   Google Scholar

[10]

Y. Zeng, $L^1$ asymptotic behavior of compressible, isentropic, viscous 1-D flow,, Comm. Pure Appl. Math., 47 (1994), 1053.  doi: 10.1002/cpa.3160470804.  Google Scholar

show all references

References:
[1]

I.-L. Chern and T.-P. Liu, Convergence to diffusion waves of solutions for viscous conservation laws,, Comm. Math. Phys., 110 (1987), 503.  doi: 10.1007/BF01212425.  Google Scholar

[2]

I.-L. Chern and T.-P. Liu, Erratum: "Convergence to difision waves of solutions for viscous conservation laws,", Comm. Math. Phys., 120 (1989), 525.   Google Scholar

[3]

S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications,, Proc. Roy. SOC. Edinburgh Sect. A, 106 (1987), 169.  doi: 10.1017/S0308210500018308.  Google Scholar

[4]

T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws,, Mem. American Mathematical Society, 56 (1985).   Google Scholar

[5]

T.-P. Liu, Interactions of nonlinear hyperbolic waves,, in, (1991), 171.   Google Scholar

[6]

T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for the one-dimensional Boltzmann equation,, Comm. Pure Appl. Math., 57 (2004), 1543.  doi: 10.1002/cpa.20011.  Google Scholar

[7]

T.-P. Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws,, Mem. Amer. Math. Soc., 125 (1997).   Google Scholar

[8]

T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofuid dynamics,, Japan J. Appl. Math., 1 (1984), 435.  doi: 10.1007/BF03167068.  Google Scholar

[9]

S. Zheng and W. Shen, Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems,, Scientia Sinica Ser. A, 30 (1987), 1133.   Google Scholar

[10]

Y. Zeng, $L^1$ asymptotic behavior of compressible, isentropic, viscous 1-D flow,, Comm. Pure Appl. Math., 47 (1994), 1053.  doi: 10.1002/cpa.3160470804.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[4]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[5]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[6]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[7]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[8]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[9]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[10]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[11]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[12]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[13]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[14]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[17]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[18]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[19]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[20]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]