March  2013, 8(1): 65-78. doi: 10.3934/nhm.2013.8.65

Growth regulation and the insulin signaling pathway

1. 

Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States, United States

2. 

Department of Zoology, Michigan State University, East Lansing, MI 48824, United States

Received  April 2012 Revised  January 2013 Published  April 2013

The insulin signaling pathway propagates a signal from receptors in the cell membrane to the nucleus via numerous molecules some of which are transported through the cell in a partially stochastic way. These different molecular species interact and eventually regulate the activity of the transcription factor FOXO, which is partly responsible for inhibiting the growth of organs. It is postulated that FOXO partially governs the plasticity of organ growth with respect to insulin signalling, thereby preserving the full function of essential organs at the expense of growth of less crucial ones during starvation conditions. We present a mathematical model of this reacting and directionally-diffusing network of molecules and examine the predictions resulting from simulations.
Citation: Peter W. Bates, Yu Liang, Alexander W. Shingleton. Growth regulation and the insulin signaling pathway. Networks and Heterogeneous Media, 2013, 8 (1) : 65-78. doi: 10.3934/nhm.2013.8.65
References:
[1]

Robert P. Erickson, Zhiyuan Jia, Steven P. Gross and Clare C. Yu, How molecular motors are arranged on a cargo is important for vesicular transport, PLoS Comput Biol., 7 (2011), 1-22.

[2]

Ahmed Essaghir, Nicolas Dif, Catherine Y. Marbehant, Paul J. Coffer and Jean-Baptiste Demoulin, The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors, J. Biol. Chem., 284 (2009), 10334-10342. doi: 10.1074/jbc.M808848200.

[3]

Geert J. Kops, Nancy D. de Ruiter, Alida M. Vries-Smits, David R. Powell, Johannes L. Bos and Boudewijn M. Burgering, Direct control of the Forkhead transcription factor AFX by protein kinase B, Nature, 398 (1999), 630-634.

[4]

Hitomi Matsuzaki, Hiroaki Daitoku, Mitsutoki Hatta, Keiji Tanaka and Akiyoshi Fukamizu, Insulin- induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation, Proc. Natl. Acad. Sci. U S A, 100 (2003), 11285-11290. doi: 10.1073/pnas.1934283100.

[5]

Oscar Puig and Robert Tjian, Transcriptional feedback control of insulin receptor by dFOXO/FOXO1, Genes & Dev., 19 (2005), 2435-2446. doi: 10.1101/gad.1340505.

[6]

Michael J. Quon and L. A. Campfield, A mathematical model and computer simulation study of insulin receptor regulation, J. Theor. Biol., 150 (1991), 59-72. doi: 10.1016/S0022-5193(05)80475-8.

[7]

Michael J. Quon and L. A. Campfield, A mathematical model and computer simulation study of insulin-sensitive glucose transporter regulation, J. Theor. Biol., 150 (1991), 93-107. doi: 10.1016/S0022-5193(05)80477-1.

[8]

Jaime Resino and Antonio García-Bellido, Drosophila genetic variants that change cell size and rate of proliferation affect cell communication and hence patterning, Mechanisms of Development, 121 (2004), 351-364. doi: 10.1016/j.mod.2004.02.007.

[9]

Ahmad R. Sedaghat, Arthur Sherman and Michael J. Quon, A mathematical model of metabolic insulin signaling pathways, Am. J. Physiol. Endocrinol. Metab., 283 (2002), 84-101.

[10]

Alexander W. Shingleton, The regulation of organ size in drosophila, Organogenesis, 6 (2010), 1-13.

[11]

Graham R. Smith and Daryl P. Shanley, Modelling the response of FOXO transcription factor to multiple post-translational modifications made by ageing-related signalling pathways, PLoS ONE, 5 (2010), 1-18. doi: 10.1371/journal.pone.0011092.

[12]

Huiyuan Tang, Martha S. B. Smith-Caldas, Michael V. Driscoll, Samy Salhadar and Alexander W. Shingleton, FOXO regulates organ-specific phenotypic plasticity in drosophila, PLoS Genet., 7 (2011), 1-12. doi: 10.1371/journal.pgen.1002373.

[13]

Lars P. Van Der Heide, Marco F. M. Hoekman and Marten P. Smidt, The ins and outs of FoxO shuttling: Mechanism of FoxO translocation and transcriptional regulation, Biochem. J., 380 (2004), 297-309.

show all references

References:
[1]

Robert P. Erickson, Zhiyuan Jia, Steven P. Gross and Clare C. Yu, How molecular motors are arranged on a cargo is important for vesicular transport, PLoS Comput Biol., 7 (2011), 1-22.

[2]

Ahmed Essaghir, Nicolas Dif, Catherine Y. Marbehant, Paul J. Coffer and Jean-Baptiste Demoulin, The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors, J. Biol. Chem., 284 (2009), 10334-10342. doi: 10.1074/jbc.M808848200.

[3]

Geert J. Kops, Nancy D. de Ruiter, Alida M. Vries-Smits, David R. Powell, Johannes L. Bos and Boudewijn M. Burgering, Direct control of the Forkhead transcription factor AFX by protein kinase B, Nature, 398 (1999), 630-634.

[4]

Hitomi Matsuzaki, Hiroaki Daitoku, Mitsutoki Hatta, Keiji Tanaka and Akiyoshi Fukamizu, Insulin- induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation, Proc. Natl. Acad. Sci. U S A, 100 (2003), 11285-11290. doi: 10.1073/pnas.1934283100.

[5]

Oscar Puig and Robert Tjian, Transcriptional feedback control of insulin receptor by dFOXO/FOXO1, Genes & Dev., 19 (2005), 2435-2446. doi: 10.1101/gad.1340505.

[6]

Michael J. Quon and L. A. Campfield, A mathematical model and computer simulation study of insulin receptor regulation, J. Theor. Biol., 150 (1991), 59-72. doi: 10.1016/S0022-5193(05)80475-8.

[7]

Michael J. Quon and L. A. Campfield, A mathematical model and computer simulation study of insulin-sensitive glucose transporter regulation, J. Theor. Biol., 150 (1991), 93-107. doi: 10.1016/S0022-5193(05)80477-1.

[8]

Jaime Resino and Antonio García-Bellido, Drosophila genetic variants that change cell size and rate of proliferation affect cell communication and hence patterning, Mechanisms of Development, 121 (2004), 351-364. doi: 10.1016/j.mod.2004.02.007.

[9]

Ahmad R. Sedaghat, Arthur Sherman and Michael J. Quon, A mathematical model of metabolic insulin signaling pathways, Am. J. Physiol. Endocrinol. Metab., 283 (2002), 84-101.

[10]

Alexander W. Shingleton, The regulation of organ size in drosophila, Organogenesis, 6 (2010), 1-13.

[11]

Graham R. Smith and Daryl P. Shanley, Modelling the response of FOXO transcription factor to multiple post-translational modifications made by ageing-related signalling pathways, PLoS ONE, 5 (2010), 1-18. doi: 10.1371/journal.pone.0011092.

[12]

Huiyuan Tang, Martha S. B. Smith-Caldas, Michael V. Driscoll, Samy Salhadar and Alexander W. Shingleton, FOXO regulates organ-specific phenotypic plasticity in drosophila, PLoS Genet., 7 (2011), 1-12. doi: 10.1371/journal.pgen.1002373.

[13]

Lars P. Van Der Heide, Marco F. M. Hoekman and Marten P. Smidt, The ins and outs of FoxO shuttling: Mechanism of FoxO translocation and transcriptional regulation, Biochem. J., 380 (2004), 297-309.

[1]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[2]

Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032

[3]

Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345

[4]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[5]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks and Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[6]

Jaroslaw Smieja, Marzena Dolbniak. Sensitivity of signaling pathway dynamics to plasmid transfection and its consequences. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1207-1222. doi: 10.3934/mbe.2016039

[7]

Paul Bracken. Connections of zero curvature and applications to nonlinear partial differential equations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1165-1179. doi: 10.3934/dcdss.2014.7.1165

[8]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

[9]

Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007

[10]

Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131

[11]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[12]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[13]

Pep Charusanti, Xiao Hu, Luonan Chen, Daniel Neuhauser, Joseph J. DiStefano III. A mathematical model of BCR-ABL autophosphorylation, signaling through the CRKL pathway, and Gleevec dynamics in chronic myeloid leukemia. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 99-114. doi: 10.3934/dcdsb.2004.4.99

[14]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[15]

Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097

[16]

B. S. Goh, W. J. Leong, Z. Siri. Partial Newton methods for a system of equations. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 463-469. doi: 10.3934/naco.2013.3.463

[17]

Jesse Berwald, Marian Gidea. Critical transitions in a model of a genetic regulatory system. Mathematical Biosciences & Engineering, 2014, 11 (4) : 723-740. doi: 10.3934/mbe.2014.11.723

[18]

István Győri, Ferenc Hartung, Nahed A. Mohamady. Boundedness of positive solutions of a system of nonlinear delay differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 809-836. doi: 10.3934/dcdsb.2018044

[19]

William Chad Young, Adrian E. Raftery, Ka Yee Yeung. A posterior probability approach for gene regulatory network inference in genetic perturbation data. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1241-1251. doi: 10.3934/mbe.2016041

[20]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete and Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (4)

[Back to Top]