-
Previous Article
Viability approach to Hamilton-Jacobi-Moskowitz problem involving variable regulation parameters
- NHM Home
- This Issue
-
Next Article
A dynamical two-dimensional traffic model in an anisotropic network
Numerical discretization of Hamilton--Jacobi equations on networks
1. | University of Mannheim, School of Business Informatics and Mathematics, A5-6, 68131 Mannheim, Germany, Germany |
2. | RWTH Aachen University, IGPM, Templergraben 55, 52056 Aachen |
References:
[1] |
A. M. Bayen and C. G. Claudel, Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations, SIAM J. Control Optim., 49 (2011), 383-402.
doi: 10.1137/090778754. |
[2] |
A. Bressan and K. Han, Optima and equilibria for a model of traffic flow, SIAM J. Math. Anal., 43 (2011), 2384-2417.
doi: 10.1137/110825145. |
[3] |
G. Bretti, R. Natalini and B. Piccoli, Numerical approximations of a traffic flow model on networks, Netw. Heterog. Media, 1 (2006), 57-84.
doi: 10.3934/nhm.2006.1.57. |
[4] |
G. Bretti and B. Piccoli, A tracking algorithm for car paths on road networks, SIAM J. Appl. Dyn. Syst., 7 (2008), 510-531.
doi: 10.1137/070697768. |
[5] |
Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 599-630.
doi: 10.3934/dcdsb.2005.5.599. |
[6] |
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886.
doi: 10.1137/S0036141004402683. |
[7] |
R. Corthout, G. Flötteröd, F. Viti and C. M. J. Tampère, Non-unique flows in macroscopic first-order intersection models, Transportation Res. Part B, 46 (2012), 343-359.
doi: 10.1016/j.trb.2011.10.011. |
[8] |
C. F. Daganzo, A variational formulation of kinematic waves: Basic theory and complex boundary conditions, Transportation Res. Part B, 39 (2005), 187-196.
doi: 10.1016/j.trb.2004.04.003. |
[9] |
C. F. Daganzo, The cell transmission model, part II: Network traffic, Transportation Res. Part B, 29 (1995), 79-93.
doi: 10.1016/0191-2615(94)00022-R. |
[10] |
C. F. Daganzo, On the variational theory of traffic flow: Well-posedness, duality and applications, Networks and Heterogeneous Media, 1 (2006), 601-619.
doi: 10.3934/nhm.2006.1.601. |
[11] |
G. B. Dantzig, "Linear Programming and Extensions," Princeton University Press, Princeton, N.J. 1963 xvi+625 pp. |
[12] |
C. D'Apice, R. Manzo and B. Piccoli, A fluid dynamic model for telecommunication networks with sources and destinations, SIAM J. Appl. Math., 68 (2008), 981-1003.
doi: 10.1137/060674132. |
[13] |
C. D'Apice, R. Manzo and L. Rarità, Splitting of traffic flows to control congestion in special events, Int. J. Math. Math. Sci., (2011), Art. ID 563171, 18 pages.
doi: 10.1155/2011/563171. |
[14] |
G. Flötteröd and J. Rohde, Operational macroscopic modeling of complex urban intersections, Transportation Res. Part B: Methodological, 45 (2011), 903-922 . |
[15] |
M. Garavello and B. Piccoli, "Traffic Flow on Networks," AIMS Series on Applied Mathematics, 1. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. xvi+243 pp. |
[16] |
M. Garavello and B. Piccoli, Source-destination flow on a road network, Commun. Math. Sci., 3 (2005), 261-283. |
[17] |
S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, (Russian) Mat. Sb. (N. S.), 47 (1959), 271-306. |
[18] |
B. Haut and G. Bastin, A second order model of road junctions in fluid models of traffic networks, Netw. Heterog. Media, 2 (2007), 227-253.
doi: 10.3934/nhm.2007.2.227. |
[19] |
M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks, SIAM Journal on Scientific Computing, 25 (2003), 1066-1087.
doi: 10.1137/S106482750241459X. |
[20] |
M. Herty and M. Rascle, Coupling conditions for a class of "second-order'' models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616.
doi: 10.1137/05062617X. |
[21] |
H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017.
doi: 10.1137/S0036141093243289. |
[22] |
C. Imbert, R. Monneau and H. Zidnani, A Hamilton-Jacobi approach to junction problems and application to traffic flow, ESAIM Control Optim. Calc. Var., 19 (2013), 129-166.
doi: 10.1051/cocv/2012002. |
[23] |
A. Kurganov and E. Tadmor, New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations, J. Comput. Phys., 160 (2000), 720-742.
doi: 10.1006/jcph.2000.6485. |
[24] |
J.-P. Lebacque and M. Khoshyaran, First order macroscopic traffic flow models for networks in the context of dynamic assignment, Transportation Planning Applied Optimization, 64 (2004), 119-140.
doi: 10.1007/0-306-48220-7_8. |
[25] |
R. J. LeVeque, "Numerical Methods for Conservation Laws," Second edition. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992.
doi: 10.1007/978-3-0348-8629-1. |
[26] |
M. J. Lighthill and G. B. Whitham, On kinematic waves II. A theory of traffic flow on long crowded roads, Proc. Royal Society London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[27] |
Y. Makigami, G. F. Newell and R. Rothery, Three-dimensional representation of traffic flow, Transportation Science, 5 (1971), 302-313.
doi: 10.1287/trsc.5.3.302. |
[28] |
P. Mazarè, A. Dehwah, C. Claudel and A. Bayen, Analytical and grid-free solutions to the lighthill-whitham-richards traffic flow model, Transportation Res. Part B: Methodological, 45 (2011), 1727-1748. |
[29] |
K. Moskowitz, Discussion of freeway level of service as influenced by volume and capacity characteristics, Highway Research Record, 99 (1965), 43-44. |
[30] |
G. F. Newell, A simplified theory of kinematic waves in highway traffic: (I) general theory; (ii) queuing at freeway bottlenecks; (iii) multi-destination flow, Transportation Res. Part B, 27 (1993), 281-313. |
[31] |
P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
show all references
References:
[1] |
A. M. Bayen and C. G. Claudel, Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations, SIAM J. Control Optim., 49 (2011), 383-402.
doi: 10.1137/090778754. |
[2] |
A. Bressan and K. Han, Optima and equilibria for a model of traffic flow, SIAM J. Math. Anal., 43 (2011), 2384-2417.
doi: 10.1137/110825145. |
[3] |
G. Bretti, R. Natalini and B. Piccoli, Numerical approximations of a traffic flow model on networks, Netw. Heterog. Media, 1 (2006), 57-84.
doi: 10.3934/nhm.2006.1.57. |
[4] |
G. Bretti and B. Piccoli, A tracking algorithm for car paths on road networks, SIAM J. Appl. Dyn. Syst., 7 (2008), 510-531.
doi: 10.1137/070697768. |
[5] |
Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 599-630.
doi: 10.3934/dcdsb.2005.5.599. |
[6] |
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886.
doi: 10.1137/S0036141004402683. |
[7] |
R. Corthout, G. Flötteröd, F. Viti and C. M. J. Tampère, Non-unique flows in macroscopic first-order intersection models, Transportation Res. Part B, 46 (2012), 343-359.
doi: 10.1016/j.trb.2011.10.011. |
[8] |
C. F. Daganzo, A variational formulation of kinematic waves: Basic theory and complex boundary conditions, Transportation Res. Part B, 39 (2005), 187-196.
doi: 10.1016/j.trb.2004.04.003. |
[9] |
C. F. Daganzo, The cell transmission model, part II: Network traffic, Transportation Res. Part B, 29 (1995), 79-93.
doi: 10.1016/0191-2615(94)00022-R. |
[10] |
C. F. Daganzo, On the variational theory of traffic flow: Well-posedness, duality and applications, Networks and Heterogeneous Media, 1 (2006), 601-619.
doi: 10.3934/nhm.2006.1.601. |
[11] |
G. B. Dantzig, "Linear Programming and Extensions," Princeton University Press, Princeton, N.J. 1963 xvi+625 pp. |
[12] |
C. D'Apice, R. Manzo and B. Piccoli, A fluid dynamic model for telecommunication networks with sources and destinations, SIAM J. Appl. Math., 68 (2008), 981-1003.
doi: 10.1137/060674132. |
[13] |
C. D'Apice, R. Manzo and L. Rarità, Splitting of traffic flows to control congestion in special events, Int. J. Math. Math. Sci., (2011), Art. ID 563171, 18 pages.
doi: 10.1155/2011/563171. |
[14] |
G. Flötteröd and J. Rohde, Operational macroscopic modeling of complex urban intersections, Transportation Res. Part B: Methodological, 45 (2011), 903-922 . |
[15] |
M. Garavello and B. Piccoli, "Traffic Flow on Networks," AIMS Series on Applied Mathematics, 1. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. xvi+243 pp. |
[16] |
M. Garavello and B. Piccoli, Source-destination flow on a road network, Commun. Math. Sci., 3 (2005), 261-283. |
[17] |
S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, (Russian) Mat. Sb. (N. S.), 47 (1959), 271-306. |
[18] |
B. Haut and G. Bastin, A second order model of road junctions in fluid models of traffic networks, Netw. Heterog. Media, 2 (2007), 227-253.
doi: 10.3934/nhm.2007.2.227. |
[19] |
M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks, SIAM Journal on Scientific Computing, 25 (2003), 1066-1087.
doi: 10.1137/S106482750241459X. |
[20] |
M. Herty and M. Rascle, Coupling conditions for a class of "second-order'' models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616.
doi: 10.1137/05062617X. |
[21] |
H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017.
doi: 10.1137/S0036141093243289. |
[22] |
C. Imbert, R. Monneau and H. Zidnani, A Hamilton-Jacobi approach to junction problems and application to traffic flow, ESAIM Control Optim. Calc. Var., 19 (2013), 129-166.
doi: 10.1051/cocv/2012002. |
[23] |
A. Kurganov and E. Tadmor, New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations, J. Comput. Phys., 160 (2000), 720-742.
doi: 10.1006/jcph.2000.6485. |
[24] |
J.-P. Lebacque and M. Khoshyaran, First order macroscopic traffic flow models for networks in the context of dynamic assignment, Transportation Planning Applied Optimization, 64 (2004), 119-140.
doi: 10.1007/0-306-48220-7_8. |
[25] |
R. J. LeVeque, "Numerical Methods for Conservation Laws," Second edition. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992.
doi: 10.1007/978-3-0348-8629-1. |
[26] |
M. J. Lighthill and G. B. Whitham, On kinematic waves II. A theory of traffic flow on long crowded roads, Proc. Royal Society London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[27] |
Y. Makigami, G. F. Newell and R. Rothery, Three-dimensional representation of traffic flow, Transportation Science, 5 (1971), 302-313.
doi: 10.1287/trsc.5.3.302. |
[28] |
P. Mazarè, A. Dehwah, C. Claudel and A. Bayen, Analytical and grid-free solutions to the lighthill-whitham-richards traffic flow model, Transportation Res. Part B: Methodological, 45 (2011), 1727-1748. |
[29] |
K. Moskowitz, Discussion of freeway level of service as influenced by volume and capacity characteristics, Highway Research Record, 99 (1965), 43-44. |
[30] |
G. F. Newell, A simplified theory of kinematic waves in highway traffic: (I) general theory; (ii) queuing at freeway bottlenecks; (iii) multi-destination flow, Transportation Res. Part B, 27 (1993), 281-313. |
[31] |
P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[1] |
Guillaume Costeseque, Jean-Patrick Lebacque. Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 411-433. doi: 10.3934/dcdss.2014.7.411 |
[2] |
Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363 |
[3] |
Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461 |
[4] |
Gonzalo Dávila. Comparison principles for nonlocal Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022061 |
[5] |
Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : i-iii. doi: 10.3934/dcdss.201805i |
[6] |
Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291 |
[7] |
Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683 |
[8] |
Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385 |
[9] |
Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic and Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255 |
[10] |
Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647 |
[11] |
Antonio Avantaggiati, Paola Loreti, Cristina Pocci. Mixed norms, functional Inequalities, and Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1855-1867. doi: 10.3934/dcdsb.2014.19.1855 |
[12] |
Martino Bardi, Yoshikazu Giga. Right accessibility of semicontinuous initial data for Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2003, 2 (4) : 447-459. doi: 10.3934/cpaa.2003.2.447 |
[13] |
Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080 |
[14] |
Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167 |
[15] |
David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205 |
[16] |
Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389 |
[17] |
Piermarco Cannarsa, Marco Mazzola, Carlo Sinestrari. Global propagation of singularities for time dependent Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4225-4239. doi: 10.3934/dcds.2015.35.4225 |
[18] |
Qing Liu, Atsushi Nakayasu. Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 157-183. doi: 10.3934/dcds.2019007 |
[19] |
Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure and Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793 |
[20] |
Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]