September  2013, 8(3): 707-726. doi: 10.3934/nhm.2013.8.707

Viability approach to Hamilton-Jacobi-Moskowitz problem involving variable regulation parameters

1. 

ENSTA ParisTech, 828, Boulevard des Maréchaux, 91762 Palaiseau Cedex, France

Received  April 2012 Revised  July 2013 Published  October 2013

A few applications of the viability theory to the solution to the Hamilton-Jacobi-Moskowitz problems are presented. In the considered problem the Hamiltonian (fundamental diagram) depends on time, position and/or some regulation parameters. We study such a problem in its equivalent variational formulation. In this case, the corresponding lagrangian depends on the state of the characteristic dynamical system. As the Lax-Hopf formulae that give the solution in a semi-explicit form for an homogeneous lagrangian do not hold, a capture basin algorithm is proposed to compute the Moskowitz function as a viability solution of the Hamilton-Jacobi-Moskowitz problem with general conditions (including initial, boundary and internal conditions). We present two examples of applications to traffic regulation problems.
Citation: Anya Désilles. Viability approach to Hamilton-Jacobi-Moskowitz problem involving variable regulation parameters. Networks & Heterogeneous Media, 2013, 8 (3) : 707-726. doi: 10.3934/nhm.2013.8.707
References:
[1]

J.-P. Aubin, "Viability Theory,", Systems & Control: Foundations & Applications, (1991).   Google Scholar

[2]

J.-P. Aubin, A. M. Bayen and P. Saint-Pierre, Dirichlet problems for some hamilton-jacobi equations with inequality constraints,, SIAM Journal on Control and Optimization, 47 (2008), 2348.  doi: 10.1137/060659569.  Google Scholar

[3]

J.-P. Aubin, A. M. Bayen and P. Saint-Pierre, "Viability Theory: New Directions,", New directions. Second edition. Springer, (2011).  doi: 10.1007/978-3-642-16684-6.  Google Scholar

[4]

J.-P. Aubin and A. Cellina, "Differential Inclusions,", Set-valued maps and viability theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 264 (1984).  doi: 10.1007/978-3-642-69512-4.  Google Scholar

[5]

E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians,, Comm. Partial Differential Equations, 15 (1990), 1713.  doi: 10.1080/03605309908820745.  Google Scholar

[6]

A. M. Bayen and C. G. Claudel, Solutions to switched Hamilton-Jacobi equations and conservation laws using hybrid components,, Hybrid systems: Computation and control, 4981 (2008).  doi: 10.1007/978-3-540-78929-1_8.  Google Scholar

[7]

C. Canudas de Wit, Best-effort highway traffic congestion control via variable speed limits,, In, (2001), 5959.   Google Scholar

[8]

R. C. Carlson, I. Papamichail, M. Papageorgiou and A. Messmer, Optimal motorway traffic flow control involving variable speed limits and ramp metering,, Transportation Science, 44 (2010), 238.  doi: 10.1287/trsc.1090.0314.  Google Scholar

[9]

C. G. Claudel and A. M. Bayen, Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations,, SIAM Journal on Control and Optimization, 49 (2011), 383.  doi: 10.1137/090778754.  Google Scholar

[10]

C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part I: Theory,, IEEE Transactions on Automatic Control, 55 (2010), 1142.  doi: 10.1109/TAC.2010.2041976.  Google Scholar

[11]

C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part II: Computational methods,, IEEE Transactions on Automatic Control, 55 (2010), 1158.  doi: 10.1109/TAC.2010.2045439.  Google Scholar

[12]

C. Daganzo, A variational formulation of kinematic waves: Basic theory and complex boundary conditions,, Transporation Research B, 39 (2005), 187.  doi: 10.1016/j.trb.2004.04.003.  Google Scholar

[13]

C. Daganzo, On the variational theory of traffic flow: Well-posedness, duality and applications,, Networks and Heterogeneous Media, 1 (2006), 601.  doi: 10.3934/nhm.2006.1.601.  Google Scholar

[14]

L. C. Edie, Car following and steady state theory for non-congested traffic,, Operations Research, 9 (1961), 66.  doi: 10.1287/opre.9.1.66.  Google Scholar

[15]

H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations,, SIAM J. Control Optim., 31 (1993), 257.  doi: 10.1137/0331016.  Google Scholar

[16]

H. Greenberg, An analysis of traffic flow,, Operations Research, 7 (1959), 79.  doi: 10.1287/opre.7.1.79.  Google Scholar

[17]

B. D. Greenshields, A study of traffic capacity,, HRB Proc., 14 (1934), 448.   Google Scholar

[18]

M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long crowded roads,, Proc. Royal Society, 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[19]

G. Newell, Nonlinear effects in the dynamics of car following,, Operations Research, 9 (1961), 209.  doi: 10.1287/opre.9.2.209.  Google Scholar

[20]

M. Papageorgiou, E. Kosmatopoulos and I. Papamichail, Effects of variable speed limits on motorway traffic flow,, Transportation Research Record: Journal of the Transportation Research Board, 2047 (2008), 37.  doi: 10.3141/2047-05.  Google Scholar

[21]

P. I. Richards, Shock waves on the highway,, Operations Research, 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[22]

P. Saint-Pierre, Approximation of the viability kernel,, Applied Mathematics and Optimisation, 29 (1994), 187.  doi: 10.1007/BF01204182.  Google Scholar

[23]

R. T. Underwood, Speed, volume and density relationships, quality and theory of traffic flow,, in, (1961), 141.   Google Scholar

show all references

References:
[1]

J.-P. Aubin, "Viability Theory,", Systems & Control: Foundations & Applications, (1991).   Google Scholar

[2]

J.-P. Aubin, A. M. Bayen and P. Saint-Pierre, Dirichlet problems for some hamilton-jacobi equations with inequality constraints,, SIAM Journal on Control and Optimization, 47 (2008), 2348.  doi: 10.1137/060659569.  Google Scholar

[3]

J.-P. Aubin, A. M. Bayen and P. Saint-Pierre, "Viability Theory: New Directions,", New directions. Second edition. Springer, (2011).  doi: 10.1007/978-3-642-16684-6.  Google Scholar

[4]

J.-P. Aubin and A. Cellina, "Differential Inclusions,", Set-valued maps and viability theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 264 (1984).  doi: 10.1007/978-3-642-69512-4.  Google Scholar

[5]

E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians,, Comm. Partial Differential Equations, 15 (1990), 1713.  doi: 10.1080/03605309908820745.  Google Scholar

[6]

A. M. Bayen and C. G. Claudel, Solutions to switched Hamilton-Jacobi equations and conservation laws using hybrid components,, Hybrid systems: Computation and control, 4981 (2008).  doi: 10.1007/978-3-540-78929-1_8.  Google Scholar

[7]

C. Canudas de Wit, Best-effort highway traffic congestion control via variable speed limits,, In, (2001), 5959.   Google Scholar

[8]

R. C. Carlson, I. Papamichail, M. Papageorgiou and A. Messmer, Optimal motorway traffic flow control involving variable speed limits and ramp metering,, Transportation Science, 44 (2010), 238.  doi: 10.1287/trsc.1090.0314.  Google Scholar

[9]

C. G. Claudel and A. M. Bayen, Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations,, SIAM Journal on Control and Optimization, 49 (2011), 383.  doi: 10.1137/090778754.  Google Scholar

[10]

C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part I: Theory,, IEEE Transactions on Automatic Control, 55 (2010), 1142.  doi: 10.1109/TAC.2010.2041976.  Google Scholar

[11]

C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part II: Computational methods,, IEEE Transactions on Automatic Control, 55 (2010), 1158.  doi: 10.1109/TAC.2010.2045439.  Google Scholar

[12]

C. Daganzo, A variational formulation of kinematic waves: Basic theory and complex boundary conditions,, Transporation Research B, 39 (2005), 187.  doi: 10.1016/j.trb.2004.04.003.  Google Scholar

[13]

C. Daganzo, On the variational theory of traffic flow: Well-posedness, duality and applications,, Networks and Heterogeneous Media, 1 (2006), 601.  doi: 10.3934/nhm.2006.1.601.  Google Scholar

[14]

L. C. Edie, Car following and steady state theory for non-congested traffic,, Operations Research, 9 (1961), 66.  doi: 10.1287/opre.9.1.66.  Google Scholar

[15]

H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations,, SIAM J. Control Optim., 31 (1993), 257.  doi: 10.1137/0331016.  Google Scholar

[16]

H. Greenberg, An analysis of traffic flow,, Operations Research, 7 (1959), 79.  doi: 10.1287/opre.7.1.79.  Google Scholar

[17]

B. D. Greenshields, A study of traffic capacity,, HRB Proc., 14 (1934), 448.   Google Scholar

[18]

M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long crowded roads,, Proc. Royal Society, 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[19]

G. Newell, Nonlinear effects in the dynamics of car following,, Operations Research, 9 (1961), 209.  doi: 10.1287/opre.9.2.209.  Google Scholar

[20]

M. Papageorgiou, E. Kosmatopoulos and I. Papamichail, Effects of variable speed limits on motorway traffic flow,, Transportation Research Record: Journal of the Transportation Research Board, 2047 (2008), 37.  doi: 10.3141/2047-05.  Google Scholar

[21]

P. I. Richards, Shock waves on the highway,, Operations Research, 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[22]

P. Saint-Pierre, Approximation of the viability kernel,, Applied Mathematics and Optimisation, 29 (1994), 187.  doi: 10.1007/BF01204182.  Google Scholar

[23]

R. T. Underwood, Speed, volume and density relationships, quality and theory of traffic flow,, in, (1961), 141.   Google Scholar

[1]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[2]

Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385

[3]

David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205

[4]

Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317

[5]

Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683

[6]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[7]

Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080

[8]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[9]

Guillaume Costeseque, Jean-Patrick Lebacque. Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 411-433. doi: 10.3934/dcdss.2014.7.411

[10]

Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176

[11]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[12]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[13]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[14]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[15]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

[16]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[17]

Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493

[18]

Yuxiang Li. Stabilization towards the steady state for a viscous Hamilton-Jacobi equation. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1917-1924. doi: 10.3934/cpaa.2009.8.1917

[19]

Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : ⅰ-ⅲ. doi: 10.3934/dcdss.201805i

[20]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]