\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Qualitative analysis of some PDE models of traffic flow

Abstract Related Papers Cited by
  • We review our previous results on partial differential equation(PDE) models of traffic flow. These models include the first order PDE models, a nonlocal PDE traffic flow model with Arrhenius look-ahead dynamics, and the second order PDE models, a discrete model which captures the essential features of traffic jams and chaotic behavior. We study the well-posedness of such PDE problems, finite time blow-up, front propagation, pattern formation and asymptotic behavior of solutions including the stability of the traveling fronts. Traveling wave solutions are wave front solutions propagating with a constant speed and propagating against traffic.
    Mathematics Subject Classification: Primary: 35B44, 35L65, 35L67, 35Q35, 76L05, 90B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.doi: 10.1137/S0036139997332099.

    [2]

    M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035-1042.

    [3]

    N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463.doi: 10.1137/090746677.

    [4]

    N. Bellomo and V. Coscia, First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow, C. R. Mecanique, 333 (2005), 843-851.doi: 10.1016/j.crme.2005.09.004.

    [5]

    F. Berthelin, P. Degond, M. Delitala and M. Rascle, A model for the formation and evolution of traffic jams, Arch. Rational Mech. Anal., 187 (2008), 185-220.doi: 10.1007/s00205-007-0061-9.

    [6]

    F. Berthelin, P. Degond, V. Le Blanc, S. Moutari, M. Rascle and J. Royer, A traffic-flow model with constraints for the modelling of traffic jams, Math. Mod. Meth. Appl. Sci., 18 (2008), (Supplement), 1269-1298.doi: 10.1142/S0218202508003030.

    [7]

    V. Coscia, On a closure of mass conservation equation and stability analysis in the mathematical theory of vehicular traffic flow, C. R. Mecanique, 332 (2004), 585-590.doi: 10.1016/j.crme.2004.03.016.

    [8]

    C. Daganzo, Requiem for second-order approximations of traffic flow, Transportation Research, B, 29 (1995), 277-286.doi: 10.1016/0191-2615(95)00007-Z.

    [9]

    P. Degond and M. Delitala, Modelling and simulation of vehicular traffic jam formation, Kinetic Related Models, 1 (2008), 279-293.doi: 10.3934/krm.2008.1.279.

    [10]

    D. Helbing, Improved fluid-dynamic model for vehicular traffic, Physical Review E, 51 (1995), 3154-3169.doi: 10.1103/PhysRevE.51.3164.

    [11]

    D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phy., 73 (2001), 1067-1141.doi: 10.1103/RevModPhys.73.1067.

    [12]

    D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models, Eur. Phys. J. B, 69 (2009), 539-548.

    [13]

    S. Jin and Jian-Guo Liu, Relaxation and diffusion enhanced dispersive waves, Proceedings: Mathematical and Physical Sciences, 446 (1994), 555-563.

    [14]

    W. L. Jin and H. M. Zhang, The formation and structure of vehicle clusters in the Payne-Whitham traffic flow model, Transportation Research, B., 37 (2003), 207-223.doi: 10.1016/S0191-2615(02)00008-5.

    [15]

    B.S. Kerner and P. Konhäuser, Structure and parameters of clusters in traffic flow, Physical Review E, 50 (1994), 54-83.doi: 10.1103/PhysRevE.50.54.

    [16]

    A. Klar and R. Wegener, Kinetic derivation of macroscopic anticipation models for vehicular traffic, SIAM J. Appl. Math., 60 (2000), 1749-1766.doi: 10.1137/S0036139999356181.

    [17]

    R. D. Kühne, Macroscopic freeway model for dense traffic-stop-start waves and incident detection, Ninth International Symposium on Transportation and Traffic Theory, VNU Science Press, Ultrecht, 1984, 21-42.

    [18]

    A. Kurganov and A. Polizzi, Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics, Netw. Heterog. Media, 4 (2009), 431-451.doi: 10.3934/nhm.2009.4.431.

    [19]

    D. A. Kurtze and D. C. Hong, Traffic jams, granular flow, and soliton selection, Phys. Rev. E, 52 (1995), 218-221.doi: 10.1103/PhysRevE.52.218.

    [20]

    H. Y. Lee, H.-W. Lee and D. Kim, Steady-state solutions of hydrodynamic traffic models, Phys. Rev. E, 69 (2004), 016118.doi: 10.1103/PhysRevE.69.016118.

    [21]

    Dong Li and Tong Li, Shock formation in a traffic flow model with arrhenius look-ahead dynamics, Networks and Heterogeneous Media, 6 (2011), 681-694.doi: 10.3934/nhm.2011.6.681.

    [22]

    Tong Li, Global solutions and zero relaxation limit for a traffic flow model, SIAM J. Appl. Math., 61 (2000), 1042-1061.doi: 10.1137/S0036139999356788.

    [23]

    Tong Li$L^1$ stability of conservation laws for a traffic flow model, Electron. J. Diff. Eqns., 2001 18 pp. (electronic).

    [24]

    Tong Li, Well-posedness theory of an inhomogeneous traffic flow model, Discrete and Continuous Dynamical Systems, Series B, 2 (2002), 401-414.doi: 10.3934/dcdsb.2002.2.401.

    [25]

    Tong Li, Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow, J. Diff. Eqns., 190 (2003), 131-149.doi: 10.1016/S0022-0396(03)00014-7.

    [26]

    Tong Li, Mathematical modelling of traffic flows, Hyperbolic problems: Theory, numerics, applications, 695-704, Springer, Berlin, 2003.

    [27]

    Tong Li, Modelling traffic flow with a time-dependent fundamental diagram, Math. Methods Appl. Sci., 27 (2004), 583-601.doi: 10.1002/mma.470.

    [28]

    Tong Li, Nonlinear dynamics of traffic jams, Physica D, 207 (2005), 41-51.doi: 10.1016/j.physd.2005.05.011.

    [29]

    Tong Li, Instability and formation of clustering solutions of traffic flow, Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 2 (2007), 281-295.

    [30]

    Tong Li, Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion, SIAM J. Math. Anal., 40 (2008), 1058-1075.doi: 10.1137/070690638.

    [31]

    Tong Li and Hailiang Liu, Stability of a traffic flow model with nonconvex relaxation, Comm. Math. Sci., 3 (2005), 101-118.

    [32]

    Tong Li and Hailiang Liu, Critical thresholds in hyperbolic relaxation systems, J. Diff. Eqns., 247 (2009), 33-48.doi: 10.1016/j.jde.2009.03.032.

    [33]

    Tong Li and Hailiang Liu, Critical thresholds in a relaxation system with resonance of characteristic speeds, Discrete and Continuous Dynamical Systems - Series A, 24 (2009), 511-521.doi: 10.3934/dcds.2009.24.511.

    [34]

    Tong Li and Hailiang Liu, Critical thresholds in a relaxation model for traffic flows, Indiana Univ. Math. J., 57 (2008), 1409-1430.doi: 10.1512/iumj.2008.57.3215.

    [35]

    Tong Li and Yaping Wu, Linear and nonlinear exponential stability of traveling waves for hyperbolic systems with relaxation, Comm. Math. Sci., 7 (2009), 571-593.

    [36]

    Tong Li and H. M. Zhang, The mathematical theory of an enhanced nonequilibrium traffic flow model, Network and Spatial Economics, A Journal of Infrastructure Modeling and Computation, Special Double Issue on Traffic Flow Theory, 1&2 (2001), 167-177.

    [37]

    M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc., London, Ser., A229 (1955), 317-345.doi: 10.1098/rspa.1955.0089.

    [38]

    T. Nagatani, The physics of traffic jams, Rep. Prog. Phys., 65 (2002), 1331-1386.doi: 10.1088/0034-4885/65/9/203.

    [39]

    K. Nagel, Particle hopping models and traffic flow theory, Phys. Rev. E, 53 (1996), 4655-4672.

    [40]

    O. A. Oleinik, Discontinuous solutions of non-linear differential equations, (Russian) Uspehi. Mat. Nauk., 12 (1957), 3-73.

    [41]

    H. J. Payne, Models of freeway traffic and control, "Simulation Councils Proc. Ser. : Mathematical Models of Public Systems," 1 (1971), 51-61, Editor G.A. Bekey, La Jolla, CA.

    [42]

    I. Prigogine and R. Herman, "Kinetic Theory of Vehicular Traffic," American Elsevier Publishing Company Inc., New York, 1971.

    [43]

    P. I. Richards, Shock waves on highway, Operations Research, 4 (1956), 42-51.doi: 10.1287/opre.4.1.42.

    [44]

    A. Sopasakis and M. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 66 (2006), 921-944.doi: 10.1137/040617790.

    [45]

    Lina Wang, Yaping Wu and Tong Li, Exponential stability of large-amplitude traveling fronts for quasi-linear relaxation systems with diffusion, Physica D, 240 (2011), 971-983.doi: 10.1016/j.physd.2011.02.003.

    [46]

    G. B. Whitham, "Linear and Nonlinear Waves," Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. xvi+636 pp.

    [47]

    Lei Yu, Tong Li and Zhong-Ke Shi, Density waves in a traffic flow model with reactive-time delay, Physica A, Statistical Mechanics and its Applications, 389 (2010), 2607-2616.doi: 10.1016/j.physa.2010.03.009.

    [48]

    Lei Yu, Tong Li and Zhong-Ke Shi, The effect of diffusion in a new viscous continuum model, Physics Letters, Section A: General, Atomic and Solid State Physics, 374 (2010), 2346-2355.doi: 10.1016/j.physleta.2010.03.056.

    [49]

    H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research, B., 36 (2002), 275-290.doi: 10.1016/S0191-2615(00)00050-3.

    [50]

    H. M. Zhang, Driver memory, traffic viscosity and a viscous vehicular traffic flow model, Transportation Research, B., 37 (2003), 27-41.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(1313) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return