• Previous Article
    Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming
  • NHM Home
  • This Issue
  • Next Article
    Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models
September  2013, 8(3): 773-781. doi: 10.3934/nhm.2013.8.773

Qualitative analysis of some PDE models of traffic flow

1. 

Department of Mathematics, University of Iowa, Iowa City, IA 52242

Received  February 2012 Revised  June 2013 Published  October 2013

We review our previous results on partial differential equation(PDE) models of traffic flow. These models include the first order PDE models, a nonlocal PDE traffic flow model with Arrhenius look-ahead dynamics, and the second order PDE models, a discrete model which captures the essential features of traffic jams and chaotic behavior. We study the well-posedness of such PDE problems, finite time blow-up, front propagation, pattern formation and asymptotic behavior of solutions including the stability of the traveling fronts. Traveling wave solutions are wave front solutions propagating with a constant speed and propagating against traffic.
Citation: Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773
References:
[1]

A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938. doi: 10.1137/S0036139997332099.

[2]

M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035-1042.

[3]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463. doi: 10.1137/090746677.

[4]

N. Bellomo and V. Coscia, First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow, C. R. Mecanique, 333 (2005), 843-851. doi: 10.1016/j.crme.2005.09.004.

[5]

F. Berthelin, P. Degond, M. Delitala and M. Rascle, A model for the formation and evolution of traffic jams, Arch. Rational Mech. Anal., 187 (2008), 185-220. doi: 10.1007/s00205-007-0061-9.

[6]

F. Berthelin, P. Degond, V. Le Blanc, S. Moutari, M. Rascle and J. Royer, A traffic-flow model with constraints for the modelling of traffic jams, Math. Mod. Meth. Appl. Sci., 18 (2008), (Supplement), 1269-1298. doi: 10.1142/S0218202508003030.

[7]

V. Coscia, On a closure of mass conservation equation and stability analysis in the mathematical theory of vehicular traffic flow, C. R. Mecanique, 332 (2004), 585-590. doi: 10.1016/j.crme.2004.03.016.

[8]

C. Daganzo, Requiem for second-order approximations of traffic flow, Transportation Research, B, 29 (1995), 277-286. doi: 10.1016/0191-2615(95)00007-Z.

[9]

P. Degond and M. Delitala, Modelling and simulation of vehicular traffic jam formation, Kinetic Related Models, 1 (2008), 279-293. doi: 10.3934/krm.2008.1.279.

[10]

D. Helbing, Improved fluid-dynamic model for vehicular traffic, Physical Review E, 51 (1995), 3154-3169. doi: 10.1103/PhysRevE.51.3164.

[11]

D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phy., 73 (2001), 1067-1141. doi: 10.1103/RevModPhys.73.1067.

[12]

D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models, Eur. Phys. J. B, 69 (2009), 539-548.

[13]

S. Jin and Jian-Guo Liu, Relaxation and diffusion enhanced dispersive waves, Proceedings: Mathematical and Physical Sciences, 446 (1994), 555-563.

[14]

W. L. Jin and H. M. Zhang, The formation and structure of vehicle clusters in the Payne-Whitham traffic flow model, Transportation Research, B., 37 (2003), 207-223. doi: 10.1016/S0191-2615(02)00008-5.

[15]

B.S. Kerner and P. Konhäuser, Structure and parameters of clusters in traffic flow, Physical Review E, 50 (1994), 54-83. doi: 10.1103/PhysRevE.50.54.

[16]

A. Klar and R. Wegener, Kinetic derivation of macroscopic anticipation models for vehicular traffic, SIAM J. Appl. Math., 60 (2000), 1749-1766. doi: 10.1137/S0036139999356181.

[17]

R. D. Kühne, Macroscopic freeway model for dense traffic-stop-start waves and incident detection, Ninth International Symposium on Transportation and Traffic Theory, VNU Science Press, Ultrecht, 1984, 21-42.

[18]

A. Kurganov and A. Polizzi, Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics, Netw. Heterog. Media, 4 (2009), 431-451. doi: 10.3934/nhm.2009.4.431.

[19]

D. A. Kurtze and D. C. Hong, Traffic jams, granular flow, and soliton selection, Phys. Rev. E, 52 (1995), 218-221. doi: 10.1103/PhysRevE.52.218.

[20]

H. Y. Lee, H.-W. Lee and D. Kim, Steady-state solutions of hydrodynamic traffic models, Phys. Rev. E, 69 (2004), 016118. doi: 10.1103/PhysRevE.69.016118.

[21]

Dong Li and Tong Li, Shock formation in a traffic flow model with arrhenius look-ahead dynamics, Networks and Heterogeneous Media, 6 (2011), 681-694. doi: 10.3934/nhm.2011.6.681.

[22]

Tong Li, Global solutions and zero relaxation limit for a traffic flow model, SIAM J. Appl. Math., 61 (2000), 1042-1061. doi: 10.1137/S0036139999356788.

[23]

Tong Li, $L^1$ stability of conservation laws for a traffic flow model,, Electron. J. Diff. Eqns., 2001 (). 

[24]

Tong Li, Well-posedness theory of an inhomogeneous traffic flow model, Discrete and Continuous Dynamical Systems, Series B, 2 (2002), 401-414. doi: 10.3934/dcdsb.2002.2.401.

[25]

Tong Li, Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow, J. Diff. Eqns., 190 (2003), 131-149. doi: 10.1016/S0022-0396(03)00014-7.

[26]

Tong Li, Mathematical modelling of traffic flows, Hyperbolic problems: Theory, numerics, applications, 695-704, Springer, Berlin, 2003.

[27]

Tong Li, Modelling traffic flow with a time-dependent fundamental diagram, Math. Methods Appl. Sci., 27 (2004), 583-601. doi: 10.1002/mma.470.

[28]

Tong Li, Nonlinear dynamics of traffic jams, Physica D, 207 (2005), 41-51. doi: 10.1016/j.physd.2005.05.011.

[29]

Tong Li, Instability and formation of clustering solutions of traffic flow, Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 2 (2007), 281-295.

[30]

Tong Li, Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion, SIAM J. Math. Anal., 40 (2008), 1058-1075. doi: 10.1137/070690638.

[31]

Tong Li and Hailiang Liu, Stability of a traffic flow model with nonconvex relaxation, Comm. Math. Sci., 3 (2005), 101-118.

[32]

Tong Li and Hailiang Liu, Critical thresholds in hyperbolic relaxation systems, J. Diff. Eqns., 247 (2009), 33-48. doi: 10.1016/j.jde.2009.03.032.

[33]

Tong Li and Hailiang Liu, Critical thresholds in a relaxation system with resonance of characteristic speeds, Discrete and Continuous Dynamical Systems - Series A, 24 (2009), 511-521. doi: 10.3934/dcds.2009.24.511.

[34]

Tong Li and Hailiang Liu, Critical thresholds in a relaxation model for traffic flows, Indiana Univ. Math. J., 57 (2008), 1409-1430. doi: 10.1512/iumj.2008.57.3215.

[35]

Tong Li and Yaping Wu, Linear and nonlinear exponential stability of traveling waves for hyperbolic systems with relaxation, Comm. Math. Sci., 7 (2009), 571-593.

[36]

Tong Li and H. M. Zhang, The mathematical theory of an enhanced nonequilibrium traffic flow model, Network and Spatial Economics, A Journal of Infrastructure Modeling and Computation, Special Double Issue on Traffic Flow Theory, 1&2 (2001), 167-177.

[37]

M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc., London, Ser., A229 (1955), 317-345. doi: 10.1098/rspa.1955.0089.

[38]

T. Nagatani, The physics of traffic jams, Rep. Prog. Phys., 65 (2002), 1331-1386. doi: 10.1088/0034-4885/65/9/203.

[39]

K. Nagel, Particle hopping models and traffic flow theory, Phys. Rev. E, 53 (1996), 4655-4672.

[40]

O. A. Oleinik, Discontinuous solutions of non-linear differential equations, (Russian) Uspehi. Mat. Nauk., 12 (1957), 3-73.

[41]

H. J. Payne, Models of freeway traffic and control, "Simulation Councils Proc. Ser. : Mathematical Models of Public Systems," 1 (1971), 51-61, Editor G.A. Bekey, La Jolla, CA.

[42]

I. Prigogine and R. Herman, "Kinetic Theory of Vehicular Traffic," American Elsevier Publishing Company Inc., New York, 1971.

[43]

P. I. Richards, Shock waves on highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42.

[44]

A. Sopasakis and M. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 66 (2006), 921-944. doi: 10.1137/040617790.

[45]

Lina Wang, Yaping Wu and Tong Li, Exponential stability of large-amplitude traveling fronts for quasi-linear relaxation systems with diffusion, Physica D, 240 (2011), 971-983. doi: 10.1016/j.physd.2011.02.003.

[46]

G. B. Whitham, "Linear and Nonlinear Waves," Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. xvi+636 pp.

[47]

Lei Yu, Tong Li and Zhong-Ke Shi, Density waves in a traffic flow model with reactive-time delay, Physica A, Statistical Mechanics and its Applications, 389 (2010), 2607-2616. doi: 10.1016/j.physa.2010.03.009.

[48]

Lei Yu, Tong Li and Zhong-Ke Shi, The effect of diffusion in a new viscous continuum model, Physics Letters, Section A: General, Atomic and Solid State Physics, 374 (2010), 2346-2355. doi: 10.1016/j.physleta.2010.03.056.

[49]

H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research, B., 36 (2002), 275-290. doi: 10.1016/S0191-2615(00)00050-3.

[50]

H. M. Zhang, Driver memory, traffic viscosity and a viscous vehicular traffic flow model, Transportation Research, B., 37 (2003), 27-41.

show all references

References:
[1]

A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938. doi: 10.1137/S0036139997332099.

[2]

M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035-1042.

[3]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463. doi: 10.1137/090746677.

[4]

N. Bellomo and V. Coscia, First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow, C. R. Mecanique, 333 (2005), 843-851. doi: 10.1016/j.crme.2005.09.004.

[5]

F. Berthelin, P. Degond, M. Delitala and M. Rascle, A model for the formation and evolution of traffic jams, Arch. Rational Mech. Anal., 187 (2008), 185-220. doi: 10.1007/s00205-007-0061-9.

[6]

F. Berthelin, P. Degond, V. Le Blanc, S. Moutari, M. Rascle and J. Royer, A traffic-flow model with constraints for the modelling of traffic jams, Math. Mod. Meth. Appl. Sci., 18 (2008), (Supplement), 1269-1298. doi: 10.1142/S0218202508003030.

[7]

V. Coscia, On a closure of mass conservation equation and stability analysis in the mathematical theory of vehicular traffic flow, C. R. Mecanique, 332 (2004), 585-590. doi: 10.1016/j.crme.2004.03.016.

[8]

C. Daganzo, Requiem for second-order approximations of traffic flow, Transportation Research, B, 29 (1995), 277-286. doi: 10.1016/0191-2615(95)00007-Z.

[9]

P. Degond and M. Delitala, Modelling and simulation of vehicular traffic jam formation, Kinetic Related Models, 1 (2008), 279-293. doi: 10.3934/krm.2008.1.279.

[10]

D. Helbing, Improved fluid-dynamic model for vehicular traffic, Physical Review E, 51 (1995), 3154-3169. doi: 10.1103/PhysRevE.51.3164.

[11]

D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phy., 73 (2001), 1067-1141. doi: 10.1103/RevModPhys.73.1067.

[12]

D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models, Eur. Phys. J. B, 69 (2009), 539-548.

[13]

S. Jin and Jian-Guo Liu, Relaxation and diffusion enhanced dispersive waves, Proceedings: Mathematical and Physical Sciences, 446 (1994), 555-563.

[14]

W. L. Jin and H. M. Zhang, The formation and structure of vehicle clusters in the Payne-Whitham traffic flow model, Transportation Research, B., 37 (2003), 207-223. doi: 10.1016/S0191-2615(02)00008-5.

[15]

B.S. Kerner and P. Konhäuser, Structure and parameters of clusters in traffic flow, Physical Review E, 50 (1994), 54-83. doi: 10.1103/PhysRevE.50.54.

[16]

A. Klar and R. Wegener, Kinetic derivation of macroscopic anticipation models for vehicular traffic, SIAM J. Appl. Math., 60 (2000), 1749-1766. doi: 10.1137/S0036139999356181.

[17]

R. D. Kühne, Macroscopic freeway model for dense traffic-stop-start waves and incident detection, Ninth International Symposium on Transportation and Traffic Theory, VNU Science Press, Ultrecht, 1984, 21-42.

[18]

A. Kurganov and A. Polizzi, Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics, Netw. Heterog. Media, 4 (2009), 431-451. doi: 10.3934/nhm.2009.4.431.

[19]

D. A. Kurtze and D. C. Hong, Traffic jams, granular flow, and soliton selection, Phys. Rev. E, 52 (1995), 218-221. doi: 10.1103/PhysRevE.52.218.

[20]

H. Y. Lee, H.-W. Lee and D. Kim, Steady-state solutions of hydrodynamic traffic models, Phys. Rev. E, 69 (2004), 016118. doi: 10.1103/PhysRevE.69.016118.

[21]

Dong Li and Tong Li, Shock formation in a traffic flow model with arrhenius look-ahead dynamics, Networks and Heterogeneous Media, 6 (2011), 681-694. doi: 10.3934/nhm.2011.6.681.

[22]

Tong Li, Global solutions and zero relaxation limit for a traffic flow model, SIAM J. Appl. Math., 61 (2000), 1042-1061. doi: 10.1137/S0036139999356788.

[23]

Tong Li, $L^1$ stability of conservation laws for a traffic flow model,, Electron. J. Diff. Eqns., 2001 (). 

[24]

Tong Li, Well-posedness theory of an inhomogeneous traffic flow model, Discrete and Continuous Dynamical Systems, Series B, 2 (2002), 401-414. doi: 10.3934/dcdsb.2002.2.401.

[25]

Tong Li, Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow, J. Diff. Eqns., 190 (2003), 131-149. doi: 10.1016/S0022-0396(03)00014-7.

[26]

Tong Li, Mathematical modelling of traffic flows, Hyperbolic problems: Theory, numerics, applications, 695-704, Springer, Berlin, 2003.

[27]

Tong Li, Modelling traffic flow with a time-dependent fundamental diagram, Math. Methods Appl. Sci., 27 (2004), 583-601. doi: 10.1002/mma.470.

[28]

Tong Li, Nonlinear dynamics of traffic jams, Physica D, 207 (2005), 41-51. doi: 10.1016/j.physd.2005.05.011.

[29]

Tong Li, Instability and formation of clustering solutions of traffic flow, Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 2 (2007), 281-295.

[30]

Tong Li, Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion, SIAM J. Math. Anal., 40 (2008), 1058-1075. doi: 10.1137/070690638.

[31]

Tong Li and Hailiang Liu, Stability of a traffic flow model with nonconvex relaxation, Comm. Math. Sci., 3 (2005), 101-118.

[32]

Tong Li and Hailiang Liu, Critical thresholds in hyperbolic relaxation systems, J. Diff. Eqns., 247 (2009), 33-48. doi: 10.1016/j.jde.2009.03.032.

[33]

Tong Li and Hailiang Liu, Critical thresholds in a relaxation system with resonance of characteristic speeds, Discrete and Continuous Dynamical Systems - Series A, 24 (2009), 511-521. doi: 10.3934/dcds.2009.24.511.

[34]

Tong Li and Hailiang Liu, Critical thresholds in a relaxation model for traffic flows, Indiana Univ. Math. J., 57 (2008), 1409-1430. doi: 10.1512/iumj.2008.57.3215.

[35]

Tong Li and Yaping Wu, Linear and nonlinear exponential stability of traveling waves for hyperbolic systems with relaxation, Comm. Math. Sci., 7 (2009), 571-593.

[36]

Tong Li and H. M. Zhang, The mathematical theory of an enhanced nonequilibrium traffic flow model, Network and Spatial Economics, A Journal of Infrastructure Modeling and Computation, Special Double Issue on Traffic Flow Theory, 1&2 (2001), 167-177.

[37]

M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc., London, Ser., A229 (1955), 317-345. doi: 10.1098/rspa.1955.0089.

[38]

T. Nagatani, The physics of traffic jams, Rep. Prog. Phys., 65 (2002), 1331-1386. doi: 10.1088/0034-4885/65/9/203.

[39]

K. Nagel, Particle hopping models and traffic flow theory, Phys. Rev. E, 53 (1996), 4655-4672.

[40]

O. A. Oleinik, Discontinuous solutions of non-linear differential equations, (Russian) Uspehi. Mat. Nauk., 12 (1957), 3-73.

[41]

H. J. Payne, Models of freeway traffic and control, "Simulation Councils Proc. Ser. : Mathematical Models of Public Systems," 1 (1971), 51-61, Editor G.A. Bekey, La Jolla, CA.

[42]

I. Prigogine and R. Herman, "Kinetic Theory of Vehicular Traffic," American Elsevier Publishing Company Inc., New York, 1971.

[43]

P. I. Richards, Shock waves on highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42.

[44]

A. Sopasakis and M. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 66 (2006), 921-944. doi: 10.1137/040617790.

[45]

Lina Wang, Yaping Wu and Tong Li, Exponential stability of large-amplitude traveling fronts for quasi-linear relaxation systems with diffusion, Physica D, 240 (2011), 971-983. doi: 10.1016/j.physd.2011.02.003.

[46]

G. B. Whitham, "Linear and Nonlinear Waves," Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. xvi+636 pp.

[47]

Lei Yu, Tong Li and Zhong-Ke Shi, Density waves in a traffic flow model with reactive-time delay, Physica A, Statistical Mechanics and its Applications, 389 (2010), 2607-2616. doi: 10.1016/j.physa.2010.03.009.

[48]

Lei Yu, Tong Li and Zhong-Ke Shi, The effect of diffusion in a new viscous continuum model, Physics Letters, Section A: General, Atomic and Solid State Physics, 374 (2010), 2346-2355. doi: 10.1016/j.physleta.2010.03.056.

[49]

H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research, B., 36 (2002), 275-290. doi: 10.1016/S0191-2615(00)00050-3.

[50]

H. M. Zhang, Driver memory, traffic viscosity and a viscous vehicular traffic flow model, Transportation Research, B., 37 (2003), 27-41.

[1]

Dong Li, Tong Li. Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2011, 6 (4) : 681-694. doi: 10.3934/nhm.2011.6.681

[2]

Yongki Lee, Hailiang Liu. Thresholds for shock formation in traffic flow models with Arrhenius look-ahead dynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 323-339. doi: 10.3934/dcds.2015.35.323

[3]

Alexander Kurganov, Anthony Polizzi. Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2009, 4 (3) : 431-451. doi: 10.3934/nhm.2009.4.431

[4]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[5]

Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161

[6]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[7]

Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108

[8]

Fang-Di Dong, Wan-Tong Li, Jia-Bing Wang. Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6291-6318. doi: 10.3934/dcds.2017272

[9]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[10]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[11]

Peter Howard, K. Zumbrun. The Evans function and stability criteria for degenerate viscous shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 837-855. doi: 10.3934/dcds.2004.10.837

[12]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[13]

James K. Knowles. On shock waves in solids. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 573-580. doi: 10.3934/dcdsb.2007.7.573

[14]

Yuri Gaididei, Anders Rønne Rasmussen, Peter Leth Christiansen, Mads Peter Sørensen. Oscillating nonlinear acoustic shock waves. Evolution Equations and Control Theory, 2016, 5 (3) : 367-381. doi: 10.3934/eect.2016009

[15]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[16]

Weiran Sun, Min Tang. A relaxation method for one dimensional traveling waves of singular and nonlocal equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1459-1491. doi: 10.3934/dcdsb.2013.18.1459

[17]

Jinling Zhou, Yu Yang, Cheng-Hsiung Hsu. Traveling waves for a nonlocal dispersal vaccination model with general incidence. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1469-1495. doi: 10.3934/dcdsb.2019236

[18]

Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659

[19]

Albert Erkip, Abba I. Ramadan. Existence of traveling waves for a class of nonlocal nonlinear equations with bell shaped kernels. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2125-2132. doi: 10.3934/cpaa.2017105

[20]

Bang-Sheng Han, Zhi-Cheng Wang, Zengji Du. Traveling waves for nonlocal Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1959-1983. doi: 10.3934/dcdsb.2020011

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (1246)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]