-
Previous Article
Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data
- NHM Home
- This Issue
-
Next Article
Qualitative analysis of some PDE models of traffic flow
Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming
1. | King Abdullah University of Science and Technology, Electrical Engineering Department, Thuwal, Makkah 23955, KSA, Saudi Arabia, Saudi Arabia |
2. | University of California at Berkely, Electrical Engineering and Computer Sciences, Berkeley CA 94720-170 |
References:
[1] |
S. Amin, A. Cardenas and S. Sastry, Safe and secure networked control systems under denial-of-service attacks,, in, (2009), 31.
doi: 10.1007/978-3-642-00602-9_3. |
[2] |
S. Amin, X. Litrico, S. Sastry and A. Bayen, Stealthy deception attacks on water scada systems,, In, (2010), 161.
doi: 10.1145/1755952.1755976. |
[3] |
J.-P. Aubin, "Viability Theory,", Systems and Control: Foundations and Applications, (1991).
|
[4] |
J.-P. Aubin, A. M. Bayen and P. Saint-Pierre, Dirichlet problems for some Hamilton-Jacobi equations with inequality constraints,, SIAM Journal on Control and Optimization, 47 (2008), 2348.
doi: 10.1137/060659569. |
[5] |
M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of {Hamilton-Jacobi-Bellman} Equations,", Birkhäuser, (1997).
doi: 10.1007/978-0-8176-4755-1. |
[6] |
E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians,, Communications in Partial Differential Equations, 15 (1990), 1713.
doi: 10.1080/03605309908820745. |
[7] |
E. S. Canepa and C. G. Claudel, Exact solutions to traffic density estimation problems involving the Lighthill-Whitman-Richards traffic flow model using Mixed Integer Linear Programing,, In, (2012), 832. Google Scholar |
[8] |
P. D. Christofides, "Nonlinear and Robust Control of Partial Differential Equation Systems: Methods and Applications to Transport-Reaction Processes,", Birkhäuser, (2001).
doi: 10.1007/978-1-4612-0185-4. |
[9] |
C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part I: Theory,, IEEE Transactions on Automatic Control, 55 (2010), 1142.
doi: 10.1109/TAC.2010.2041976. |
[10] |
C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part {II: Computational methods},, IEEE Transactions on Automatic Control, 55 (2010), 1158.
doi: 10.1109/TAC.2010.2045439. |
[11] |
C. G. Claudel and A. M Bayen, Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations,, SIAM Journal on Control and Optimization, 49 (2011), 383.
doi: 10.1137/090778754. |
[12] |
M. G. Crandall and P.-L. Lions, Viscosity solutions of {Hamilton-Jacobi equations},, Transactions of the American Mathematical Society, 277 (1983), 1.
doi: 10.1090/S0002-9947-1983-0690039-8. |
[13] |
C. Daganzo, The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory,, Transportation Research, 28B (1994), 269.
doi: 10.1016/0191-2615(94)90002-7. |
[14] |
C. F. Daganzo, A variational formulation of kinematic waves: basic theory and complex boundary conditions,, Transportation Research B, 39B (2005), 187.
doi: 10.1016/j.trb.2004.04.003. |
[15] |
C. F. Daganzo, On the variational theory of traffic flow: well-posedness, duality and applications,, Networks and Heterogeneous Media, 1 (2006), 601.
doi: 10.3934/nhm.2006.1.601. |
[16] |
H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations,, SIAM Journal of Control and Optimization, 31 (1993), 257.
doi: 10.1137/0331016. |
[17] |
J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson and A. M. Bayen, Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment,, Transportation Research Part C: Emerging Technologies, 18 (2010), 568.
doi: 10.1016/j.trc.2009.10.006. |
[18] |
B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J. C. Herrera, A. M. Bayen, M. Annavaram and Q. Jacobson, Virtual trip lines for distributed privacy-preserving traffic monitoring,, in, (2008), 15.
doi: 10.1145/1378600.1378604. |
[19] |
M. Krstic and A. Smyshlyaev, Backstepping boundary control for first-order hyperbolic pdes and application to systems with actuator and sensor delays,, Systems & Control Letters, 57 (2008), 750.
doi: 10.1016/j.sysconle.2008.02.005. |
[20] |
P. E. Mazare, A. Dehwah, C. G. Claudel and A. M. Bayen, Analytical and grid-free solutions to the lighthill-whitham-richards traffic flow model,, Transportation Research Part B: Methodological, 45 (2011), 1727.
doi: 10.1016/j.trb.2011.07.004. |
[21] |
K. Moskowitz, Discussion of "freeway level of service as influenced by volume and capacity characteristics' by D.R. Drew and C. J. Keese,, Highway Research Record, 99 (1965), 43. Google Scholar |
[22] |
G. F. Newell, A simplified theory of kinematic waves in highway traffic, Part (I), (II) and (III)., Transporation Research B, 27B (1993), 281. Google Scholar |
[23] |
R. C. Smith and M. A. Demetriou, "Research Directions in Distributed Parameter Systems,", SIAM, (2000).
doi: 10.1137/1.9780898717525. |
[24] |
I. S. Strub and A. M. Bayen, Weak formulation of boundary conditions for scalar conservation laws,, International Journal of Robust and Nonlinear Control, 16 (2006), 733.
doi: 10.1002/rnc.1099. |
[25] |
D. Work, S. Blandin, O. Tossavainen, B. Piccoli and A. Bayen, A distributed highway velocity model for traffic state reconstruction,, Applied Research Mathematics eXpress (ARMX), 1 (2010), 1. Google Scholar |
[26] | |
[27] |
show all references
References:
[1] |
S. Amin, A. Cardenas and S. Sastry, Safe and secure networked control systems under denial-of-service attacks,, in, (2009), 31.
doi: 10.1007/978-3-642-00602-9_3. |
[2] |
S. Amin, X. Litrico, S. Sastry and A. Bayen, Stealthy deception attacks on water scada systems,, In, (2010), 161.
doi: 10.1145/1755952.1755976. |
[3] |
J.-P. Aubin, "Viability Theory,", Systems and Control: Foundations and Applications, (1991).
|
[4] |
J.-P. Aubin, A. M. Bayen and P. Saint-Pierre, Dirichlet problems for some Hamilton-Jacobi equations with inequality constraints,, SIAM Journal on Control and Optimization, 47 (2008), 2348.
doi: 10.1137/060659569. |
[5] |
M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of {Hamilton-Jacobi-Bellman} Equations,", Birkhäuser, (1997).
doi: 10.1007/978-0-8176-4755-1. |
[6] |
E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians,, Communications in Partial Differential Equations, 15 (1990), 1713.
doi: 10.1080/03605309908820745. |
[7] |
E. S. Canepa and C. G. Claudel, Exact solutions to traffic density estimation problems involving the Lighthill-Whitman-Richards traffic flow model using Mixed Integer Linear Programing,, In, (2012), 832. Google Scholar |
[8] |
P. D. Christofides, "Nonlinear and Robust Control of Partial Differential Equation Systems: Methods and Applications to Transport-Reaction Processes,", Birkhäuser, (2001).
doi: 10.1007/978-1-4612-0185-4. |
[9] |
C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part I: Theory,, IEEE Transactions on Automatic Control, 55 (2010), 1142.
doi: 10.1109/TAC.2010.2041976. |
[10] |
C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part {II: Computational methods},, IEEE Transactions on Automatic Control, 55 (2010), 1158.
doi: 10.1109/TAC.2010.2045439. |
[11] |
C. G. Claudel and A. M Bayen, Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations,, SIAM Journal on Control and Optimization, 49 (2011), 383.
doi: 10.1137/090778754. |
[12] |
M. G. Crandall and P.-L. Lions, Viscosity solutions of {Hamilton-Jacobi equations},, Transactions of the American Mathematical Society, 277 (1983), 1.
doi: 10.1090/S0002-9947-1983-0690039-8. |
[13] |
C. Daganzo, The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory,, Transportation Research, 28B (1994), 269.
doi: 10.1016/0191-2615(94)90002-7. |
[14] |
C. F. Daganzo, A variational formulation of kinematic waves: basic theory and complex boundary conditions,, Transportation Research B, 39B (2005), 187.
doi: 10.1016/j.trb.2004.04.003. |
[15] |
C. F. Daganzo, On the variational theory of traffic flow: well-posedness, duality and applications,, Networks and Heterogeneous Media, 1 (2006), 601.
doi: 10.3934/nhm.2006.1.601. |
[16] |
H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations,, SIAM Journal of Control and Optimization, 31 (1993), 257.
doi: 10.1137/0331016. |
[17] |
J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson and A. M. Bayen, Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment,, Transportation Research Part C: Emerging Technologies, 18 (2010), 568.
doi: 10.1016/j.trc.2009.10.006. |
[18] |
B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J. C. Herrera, A. M. Bayen, M. Annavaram and Q. Jacobson, Virtual trip lines for distributed privacy-preserving traffic monitoring,, in, (2008), 15.
doi: 10.1145/1378600.1378604. |
[19] |
M. Krstic and A. Smyshlyaev, Backstepping boundary control for first-order hyperbolic pdes and application to systems with actuator and sensor delays,, Systems & Control Letters, 57 (2008), 750.
doi: 10.1016/j.sysconle.2008.02.005. |
[20] |
P. E. Mazare, A. Dehwah, C. G. Claudel and A. M. Bayen, Analytical and grid-free solutions to the lighthill-whitham-richards traffic flow model,, Transportation Research Part B: Methodological, 45 (2011), 1727.
doi: 10.1016/j.trb.2011.07.004. |
[21] |
K. Moskowitz, Discussion of "freeway level of service as influenced by volume and capacity characteristics' by D.R. Drew and C. J. Keese,, Highway Research Record, 99 (1965), 43. Google Scholar |
[22] |
G. F. Newell, A simplified theory of kinematic waves in highway traffic, Part (I), (II) and (III)., Transporation Research B, 27B (1993), 281. Google Scholar |
[23] |
R. C. Smith and M. A. Demetriou, "Research Directions in Distributed Parameter Systems,", SIAM, (2000).
doi: 10.1137/1.9780898717525. |
[24] |
I. S. Strub and A. M. Bayen, Weak formulation of boundary conditions for scalar conservation laws,, International Journal of Robust and Nonlinear Control, 16 (2006), 733.
doi: 10.1002/rnc.1099. |
[25] |
D. Work, S. Blandin, O. Tossavainen, B. Piccoli and A. Bayen, A distributed highway velocity model for traffic state reconstruction,, Applied Research Mathematics eXpress (ARMX), 1 (2010), 1. Google Scholar |
[26] | |
[27] |
[1] |
Elham Mardaneh, Ryan Loxton, Qun Lin, Phil Schmidli. A mixed-integer linear programming model for optimal vessel scheduling in offshore oil and gas operations. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1601-1623. doi: 10.3934/jimo.2017009 |
[2] |
Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053 |
[3] |
Ye Tian, Cheng Lu. Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1027-1039. doi: 10.3934/jimo.2011.7.1027 |
[4] |
Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014 |
[5] |
René Henrion, Christian Küchler, Werner Römisch. Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 363-384. doi: 10.3934/jimo.2008.4.363 |
[6] |
Louis Caccetta, Syarifah Z. Nordin. Mixed integer programming model for scheduling in unrelated parallel processor system with priority consideration. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 115-132. doi: 10.3934/naco.2014.4.115 |
[7] |
Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557 |
[8] |
Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097 |
[9] |
Mahmoud Ameri, Armin Jarrahi. An executive model for network-level pavement maintenance and rehabilitation planning based on linear integer programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018179 |
[10] |
Wan Nor Ashikin Wan Ahmad Fatthi, Adibah Shuib, Rosma Mohd Dom. A mixed integer programming model for solving real-time truck-to-door assignment and scheduling problem at cross docking warehouse. Journal of Industrial & Management Optimization, 2016, 12 (2) : 431-447. doi: 10.3934/jimo.2016.12.431 |
[11] |
Fanwen Meng, Kiok Liang Teow, Kelvin Wee Sheng Teo, Chee Kheong Ooi, Seow Yian Tay. Predicting 72-hour reattendance in emergency departments using discriminant analysis via mixed integer programming with electronic medical records. Journal of Industrial & Management Optimization, 2019, 15 (2) : 947-962. doi: 10.3934/jimo.2018079 |
[12] |
Sigurdur Hafstein, Skuli Gudmundsson, Peter Giesl, Enrico Scalas. Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 939-956. doi: 10.3934/dcdsb.2018049 |
[13] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
[14] |
Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013 |
[15] |
Yacine Chitour, Jean-Michel Coron, Mauro Garavello. On conditions that prevent steady-state controllability of certain linear partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 643-672. doi: 10.3934/dcds.2006.14.643 |
[16] |
Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure & Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211 |
[17] |
Xiaoyu Fu. Stabilization of hyperbolic equations with mixed boundary conditions. Mathematical Control & Related Fields, 2015, 5 (4) : 761-780. doi: 10.3934/mcrf.2015.5.761 |
[18] |
T. Candan, R.S. Dahiya. Oscillation of mixed neutral differential equations with forcing term. Conference Publications, 2003, 2003 (Special) : 167-172. doi: 10.3934/proc.2003.2003.167 |
[19] |
Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95 |
[20] |
Robert Baier, Lars Grüne, Sigurđur Freyr Hafstein. Linear programming based Lyapunov function computation for differential inclusions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 33-56. doi: 10.3934/dcdsb.2012.17.33 |
2018 Impact Factor: 0.871
Tools
Metrics
Other articles
by authors
[Back to Top]