-
Previous Article
Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data
- NHM Home
- This Issue
-
Next Article
Qualitative analysis of some PDE models of traffic flow
Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming
1. | King Abdullah University of Science and Technology, Electrical Engineering Department, Thuwal, Makkah 23955, KSA, Saudi Arabia, Saudi Arabia |
2. | University of California at Berkely, Electrical Engineering and Computer Sciences, Berkeley CA 94720-170 |
References:
[1] |
S. Amin, A. Cardenas and S. Sastry, Safe and secure networked control systems under denial-of-service attacks,, in, (2009), 31.
doi: 10.1007/978-3-642-00602-9_3. |
[2] |
S. Amin, X. Litrico, S. Sastry and A. Bayen, Stealthy deception attacks on water scada systems,, In, (2010), 161.
doi: 10.1145/1755952.1755976. |
[3] |
J.-P. Aubin, "Viability Theory,", Systems and Control: Foundations and Applications, (1991).
|
[4] |
J.-P. Aubin, A. M. Bayen and P. Saint-Pierre, Dirichlet problems for some Hamilton-Jacobi equations with inequality constraints,, SIAM Journal on Control and Optimization, 47 (2008), 2348.
doi: 10.1137/060659569. |
[5] |
M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of {Hamilton-Jacobi-Bellman} Equations,", Birkhäuser, (1997).
doi: 10.1007/978-0-8176-4755-1. |
[6] |
E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians,, Communications in Partial Differential Equations, 15 (1990), 1713.
doi: 10.1080/03605309908820745. |
[7] |
E. S. Canepa and C. G. Claudel, Exact solutions to traffic density estimation problems involving the Lighthill-Whitman-Richards traffic flow model using Mixed Integer Linear Programing,, In, (2012), 832. Google Scholar |
[8] |
P. D. Christofides, "Nonlinear and Robust Control of Partial Differential Equation Systems: Methods and Applications to Transport-Reaction Processes,", Birkhäuser, (2001).
doi: 10.1007/978-1-4612-0185-4. |
[9] |
C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part I: Theory,, IEEE Transactions on Automatic Control, 55 (2010), 1142.
doi: 10.1109/TAC.2010.2041976. |
[10] |
C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part {II: Computational methods},, IEEE Transactions on Automatic Control, 55 (2010), 1158.
doi: 10.1109/TAC.2010.2045439. |
[11] |
C. G. Claudel and A. M Bayen, Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations,, SIAM Journal on Control and Optimization, 49 (2011), 383.
doi: 10.1137/090778754. |
[12] |
M. G. Crandall and P.-L. Lions, Viscosity solutions of {Hamilton-Jacobi equations},, Transactions of the American Mathematical Society, 277 (1983), 1.
doi: 10.1090/S0002-9947-1983-0690039-8. |
[13] |
C. Daganzo, The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory,, Transportation Research, 28B (1994), 269.
doi: 10.1016/0191-2615(94)90002-7. |
[14] |
C. F. Daganzo, A variational formulation of kinematic waves: basic theory and complex boundary conditions,, Transportation Research B, 39B (2005), 187.
doi: 10.1016/j.trb.2004.04.003. |
[15] |
C. F. Daganzo, On the variational theory of traffic flow: well-posedness, duality and applications,, Networks and Heterogeneous Media, 1 (2006), 601.
doi: 10.3934/nhm.2006.1.601. |
[16] |
H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations,, SIAM Journal of Control and Optimization, 31 (1993), 257.
doi: 10.1137/0331016. |
[17] |
J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson and A. M. Bayen, Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment,, Transportation Research Part C: Emerging Technologies, 18 (2010), 568.
doi: 10.1016/j.trc.2009.10.006. |
[18] |
B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J. C. Herrera, A. M. Bayen, M. Annavaram and Q. Jacobson, Virtual trip lines for distributed privacy-preserving traffic monitoring,, in, (2008), 15.
doi: 10.1145/1378600.1378604. |
[19] |
M. Krstic and A. Smyshlyaev, Backstepping boundary control for first-order hyperbolic pdes and application to systems with actuator and sensor delays,, Systems & Control Letters, 57 (2008), 750.
doi: 10.1016/j.sysconle.2008.02.005. |
[20] |
P. E. Mazare, A. Dehwah, C. G. Claudel and A. M. Bayen, Analytical and grid-free solutions to the lighthill-whitham-richards traffic flow model,, Transportation Research Part B: Methodological, 45 (2011), 1727.
doi: 10.1016/j.trb.2011.07.004. |
[21] |
K. Moskowitz, Discussion of "freeway level of service as influenced by volume and capacity characteristics' by D.R. Drew and C. J. Keese,, Highway Research Record, 99 (1965), 43. Google Scholar |
[22] |
G. F. Newell, A simplified theory of kinematic waves in highway traffic, Part (I), (II) and (III)., Transporation Research B, 27B (1993), 281. Google Scholar |
[23] |
R. C. Smith and M. A. Demetriou, "Research Directions in Distributed Parameter Systems,", SIAM, (2000).
doi: 10.1137/1.9780898717525. |
[24] |
I. S. Strub and A. M. Bayen, Weak formulation of boundary conditions for scalar conservation laws,, International Journal of Robust and Nonlinear Control, 16 (2006), 733.
doi: 10.1002/rnc.1099. |
[25] |
D. Work, S. Blandin, O. Tossavainen, B. Piccoli and A. Bayen, A distributed highway velocity model for traffic state reconstruction,, Applied Research Mathematics eXpress (ARMX), 1 (2010), 1. Google Scholar |
[26] | |
[27] |
show all references
References:
[1] |
S. Amin, A. Cardenas and S. Sastry, Safe and secure networked control systems under denial-of-service attacks,, in, (2009), 31.
doi: 10.1007/978-3-642-00602-9_3. |
[2] |
S. Amin, X. Litrico, S. Sastry and A. Bayen, Stealthy deception attacks on water scada systems,, In, (2010), 161.
doi: 10.1145/1755952.1755976. |
[3] |
J.-P. Aubin, "Viability Theory,", Systems and Control: Foundations and Applications, (1991).
|
[4] |
J.-P. Aubin, A. M. Bayen and P. Saint-Pierre, Dirichlet problems for some Hamilton-Jacobi equations with inequality constraints,, SIAM Journal on Control and Optimization, 47 (2008), 2348.
doi: 10.1137/060659569. |
[5] |
M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of {Hamilton-Jacobi-Bellman} Equations,", Birkhäuser, (1997).
doi: 10.1007/978-0-8176-4755-1. |
[6] |
E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians,, Communications in Partial Differential Equations, 15 (1990), 1713.
doi: 10.1080/03605309908820745. |
[7] |
E. S. Canepa and C. G. Claudel, Exact solutions to traffic density estimation problems involving the Lighthill-Whitman-Richards traffic flow model using Mixed Integer Linear Programing,, In, (2012), 832. Google Scholar |
[8] |
P. D. Christofides, "Nonlinear and Robust Control of Partial Differential Equation Systems: Methods and Applications to Transport-Reaction Processes,", Birkhäuser, (2001).
doi: 10.1007/978-1-4612-0185-4. |
[9] |
C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part I: Theory,, IEEE Transactions on Automatic Control, 55 (2010), 1142.
doi: 10.1109/TAC.2010.2041976. |
[10] |
C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part {II: Computational methods},, IEEE Transactions on Automatic Control, 55 (2010), 1158.
doi: 10.1109/TAC.2010.2045439. |
[11] |
C. G. Claudel and A. M Bayen, Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations,, SIAM Journal on Control and Optimization, 49 (2011), 383.
doi: 10.1137/090778754. |
[12] |
M. G. Crandall and P.-L. Lions, Viscosity solutions of {Hamilton-Jacobi equations},, Transactions of the American Mathematical Society, 277 (1983), 1.
doi: 10.1090/S0002-9947-1983-0690039-8. |
[13] |
C. Daganzo, The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory,, Transportation Research, 28B (1994), 269.
doi: 10.1016/0191-2615(94)90002-7. |
[14] |
C. F. Daganzo, A variational formulation of kinematic waves: basic theory and complex boundary conditions,, Transportation Research B, 39B (2005), 187.
doi: 10.1016/j.trb.2004.04.003. |
[15] |
C. F. Daganzo, On the variational theory of traffic flow: well-posedness, duality and applications,, Networks and Heterogeneous Media, 1 (2006), 601.
doi: 10.3934/nhm.2006.1.601. |
[16] |
H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations,, SIAM Journal of Control and Optimization, 31 (1993), 257.
doi: 10.1137/0331016. |
[17] |
J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson and A. M. Bayen, Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment,, Transportation Research Part C: Emerging Technologies, 18 (2010), 568.
doi: 10.1016/j.trc.2009.10.006. |
[18] |
B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J. C. Herrera, A. M. Bayen, M. Annavaram and Q. Jacobson, Virtual trip lines for distributed privacy-preserving traffic monitoring,, in, (2008), 15.
doi: 10.1145/1378600.1378604. |
[19] |
M. Krstic and A. Smyshlyaev, Backstepping boundary control for first-order hyperbolic pdes and application to systems with actuator and sensor delays,, Systems & Control Letters, 57 (2008), 750.
doi: 10.1016/j.sysconle.2008.02.005. |
[20] |
P. E. Mazare, A. Dehwah, C. G. Claudel and A. M. Bayen, Analytical and grid-free solutions to the lighthill-whitham-richards traffic flow model,, Transportation Research Part B: Methodological, 45 (2011), 1727.
doi: 10.1016/j.trb.2011.07.004. |
[21] |
K. Moskowitz, Discussion of "freeway level of service as influenced by volume and capacity characteristics' by D.R. Drew and C. J. Keese,, Highway Research Record, 99 (1965), 43. Google Scholar |
[22] |
G. F. Newell, A simplified theory of kinematic waves in highway traffic, Part (I), (II) and (III)., Transporation Research B, 27B (1993), 281. Google Scholar |
[23] |
R. C. Smith and M. A. Demetriou, "Research Directions in Distributed Parameter Systems,", SIAM, (2000).
doi: 10.1137/1.9780898717525. |
[24] |
I. S. Strub and A. M. Bayen, Weak formulation of boundary conditions for scalar conservation laws,, International Journal of Robust and Nonlinear Control, 16 (2006), 733.
doi: 10.1002/rnc.1099. |
[25] |
D. Work, S. Blandin, O. Tossavainen, B. Piccoli and A. Bayen, A distributed highway velocity model for traffic state reconstruction,, Applied Research Mathematics eXpress (ARMX), 1 (2010), 1. Google Scholar |
[26] | |
[27] |
[1] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[2] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[3] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[4] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[5] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[6] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[7] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[8] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[9] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[10] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[11] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[12] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[13] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[14] |
Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291 |
[15] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[16] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[17] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[18] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[19] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[20] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]