-
Previous Article
Probability hypothesis density filtering for real-time traffic state estimation and prediction
- NHM Home
- This Issue
-
Next Article
Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming
Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data
1. | Microsoft, 1065 La Avenida St, Mountain View, CA 94043, United States |
2. | University of Illinois at Urbana-Champaign, 1203 Newmark Civil Engineering Laboratory, 205 N. Mathews Ave, Urbana, IL 61801, United States |
References:
[1] |
T. Bellemans, B. D. Schutter and B. D. Moor, Model predictive control with repeated model fitting for ramp metering, in "Proceedings of the IEEE 5th Conference on Intelligent Transportation Systems," (2002), 236-241.
doi: 10.1109/ITSC.2002.1041221. |
[2] |
T. Bellemans, B. D. Schutter, G. Wets and B. D. Moor, Model predictive control for ramp metering combined with extended Kalman filter-based traffic state estimation, in "Proceedings of IEEE Intelligent Transportation Systems Conference," (2006), 406-411.
doi: 10.1109/ITSC.2006.1706775. |
[3] |
S. Blandin, A. Couque, A. Bayen and D. Work, On sequential data assimilation for scalar macroscopic traffic flow models, Physica D: Nonlinear Phenomena, 241 (2012), 1421-1440. |
[4] |
G. Bretti and B. Piccoli, A tracking algorithm for car paths on road networks, SIAM Journal on Applied Dynamical Systems, 7 (2008), 510-531.
doi: 10.1137/070697768. |
[5] |
R. M. Colombo and A. Marson, A Hölder continuous ode related to traffic flow, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 133 (2003), 759-772.
doi: 10.1017/S0308210500002663. |
[6] |
M. Cremer and M. Papageorgiou, Parameter identification for a traffic flow model, Automatica J. IFAC, 17 (1981), 837-843.
doi: 10.1016/0005-1098(81)90071-6. |
[7] |
E. Cristiani, C. de Fabritiis and B. Piccoli, A fluid dynamic approach for traffic forecast from mobile sensor data, Communications in Applied and Industrial Mathematics, 1 (2010), 54-71. |
[8] |
G. Dervisoglu, G. Gomes, J. Kwon, R. Horowitz and P. Varaiya, Automatic calibration of the fundamental diagram and empirical observations on capacity, in "Proceedings of the 88th Annual Meeting," Washington, D.C., 2009, Transportation Research Board. |
[9] |
M. Garavello and B. Piccoli, "Traffic Flow on Networks," Conservation laws models. AIMS Series on Applied Mathematics, 1. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. xvi+243 pp. |
[10] |
W. Gilks, S. Richardson and D. Spegelhalter, "Markov Chain Monte Carlo in Practice," Interdisciplinary Statistics. Chapman & Hall, London, 1996. |
[11] |
S. Godunov, A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations, (Russian) Mat. Sb. (N. S.), 47 (1959), 271-306. |
[12] |
A. Hegyi, D. Girimonte, R. Babŭska and B. D. Schutter, A comparison of filter configurations for freeway traffic state estimation, in "Proceedings of the 2006 IEEE Intelligent Transportation Systems Conference," Toronto, Canada, 2006, ITSC, 1029-1034.
doi: 10.1109/ITSC.2006.1707357. |
[13] |
J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems," Springer, 2005. |
[14] |
J. Lebacque, The Godunov scheme and what it means for first order traffic flow models, in "13th International Symposium on Transportation and Traffic Theory," (1996), 647-677. |
[15] |
R. J. LeVeque, "Numerical Methods for Conservation Laws," Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1992. x+214 pp.
doi: 10.1007/978-3-0348-8629-1. |
[16] |
M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A. 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[17] |
J. V. Lint, S. Hoogendoorn and A. Hegyi, Dual EKF state and parameter estimation in multi-class first-order traffic flow models, in "Proceedings of the 17th World Congress," Seoul, Korea, (2008), The International Federation of Automatic Control. |
[18] |
X.-Y. Lu, P. Varaiya and R. Horowitz, Fundamental diagram modeling and analysis based on NGSIM data, in "12th IFAC Symposium on Control in Transportation Systems," (2009). |
[19] |
L. Mihaylova, R. Boel and A. Hegyi, Freeway traffic estimation within particle filtering framework, Automatica J. IFAC, 43 (2007), 290-300.
doi: 10.1016/j.automatica.2006.08.023. |
[20] |
L. Munoz, X. Sun, D. Sun, G. Gomez and R. Horowitz, Methodological calibration of the cell transmission model, in "Proceedings of the American Control Conference," 1, 2004, 798-803. |
[21] |
A. Muralidharan, G. Dervisoglu and R. Horowitz, Probabilistic graphical models of fundamental diagram parameters for freeway traffic simulations, in "Proceedings of the 90th Annual Meeting," Washington, D.C., (2011), Transportation Research Board.
doi: 10.3141/2249-10. |
[22] |
P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[23] |
S. Smulders, Control of freeway traffic flow by variable speed signs, Transportation Research Part B: Methodological, 24 (1990), 111-132.
doi: 10.1016/0191-2615(90)90023-R. |
[24] |
Transportation Research Board, "HCM 2010: Highway Capacity Manual," (2010). |
[25] |
, , ().
|
[26] |
Y. Wang, M. Papageorgiou and A. Messmer, RENAISSANCE - A unified macroscopic model-based approach to real-time freeway network traffic surveillance, Transportation Research Part C: Emerging Technologies, 14 (2006), 190-212.
doi: 10.1016/j.trc.2006.06.001. |
[27] |
Y. Wang, M. Papageorgiou and A. Messmer, Real-time freeway traffic state estimation based on extended kalman filter: A case study, Transportation Science, 41 (2007), 167-181.
doi: 10.1287/trsc.1070.0194. |
[28] |
D. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli and A. Bayen, A traffic model for velocity data assimilation, Appl. Math. Res. Express. AMRX, 2010 (2010), 1-35. |
[29] |
J. Yan, Parameter identification of freeway traffic flow model and adaptive ramp metering, in "2009 Second International Symposium on Electronic Commerce and Security," (2009), 235-238.
doi: 10.1109/ISECS.2009.39. |
show all references
References:
[1] |
T. Bellemans, B. D. Schutter and B. D. Moor, Model predictive control with repeated model fitting for ramp metering, in "Proceedings of the IEEE 5th Conference on Intelligent Transportation Systems," (2002), 236-241.
doi: 10.1109/ITSC.2002.1041221. |
[2] |
T. Bellemans, B. D. Schutter, G. Wets and B. D. Moor, Model predictive control for ramp metering combined with extended Kalman filter-based traffic state estimation, in "Proceedings of IEEE Intelligent Transportation Systems Conference," (2006), 406-411.
doi: 10.1109/ITSC.2006.1706775. |
[3] |
S. Blandin, A. Couque, A. Bayen and D. Work, On sequential data assimilation for scalar macroscopic traffic flow models, Physica D: Nonlinear Phenomena, 241 (2012), 1421-1440. |
[4] |
G. Bretti and B. Piccoli, A tracking algorithm for car paths on road networks, SIAM Journal on Applied Dynamical Systems, 7 (2008), 510-531.
doi: 10.1137/070697768. |
[5] |
R. M. Colombo and A. Marson, A Hölder continuous ode related to traffic flow, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 133 (2003), 759-772.
doi: 10.1017/S0308210500002663. |
[6] |
M. Cremer and M. Papageorgiou, Parameter identification for a traffic flow model, Automatica J. IFAC, 17 (1981), 837-843.
doi: 10.1016/0005-1098(81)90071-6. |
[7] |
E. Cristiani, C. de Fabritiis and B. Piccoli, A fluid dynamic approach for traffic forecast from mobile sensor data, Communications in Applied and Industrial Mathematics, 1 (2010), 54-71. |
[8] |
G. Dervisoglu, G. Gomes, J. Kwon, R. Horowitz and P. Varaiya, Automatic calibration of the fundamental diagram and empirical observations on capacity, in "Proceedings of the 88th Annual Meeting," Washington, D.C., 2009, Transportation Research Board. |
[9] |
M. Garavello and B. Piccoli, "Traffic Flow on Networks," Conservation laws models. AIMS Series on Applied Mathematics, 1. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. xvi+243 pp. |
[10] |
W. Gilks, S. Richardson and D. Spegelhalter, "Markov Chain Monte Carlo in Practice," Interdisciplinary Statistics. Chapman & Hall, London, 1996. |
[11] |
S. Godunov, A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations, (Russian) Mat. Sb. (N. S.), 47 (1959), 271-306. |
[12] |
A. Hegyi, D. Girimonte, R. Babŭska and B. D. Schutter, A comparison of filter configurations for freeway traffic state estimation, in "Proceedings of the 2006 IEEE Intelligent Transportation Systems Conference," Toronto, Canada, 2006, ITSC, 1029-1034.
doi: 10.1109/ITSC.2006.1707357. |
[13] |
J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems," Springer, 2005. |
[14] |
J. Lebacque, The Godunov scheme and what it means for first order traffic flow models, in "13th International Symposium on Transportation and Traffic Theory," (1996), 647-677. |
[15] |
R. J. LeVeque, "Numerical Methods for Conservation Laws," Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1992. x+214 pp.
doi: 10.1007/978-3-0348-8629-1. |
[16] |
M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A. 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[17] |
J. V. Lint, S. Hoogendoorn and A. Hegyi, Dual EKF state and parameter estimation in multi-class first-order traffic flow models, in "Proceedings of the 17th World Congress," Seoul, Korea, (2008), The International Federation of Automatic Control. |
[18] |
X.-Y. Lu, P. Varaiya and R. Horowitz, Fundamental diagram modeling and analysis based on NGSIM data, in "12th IFAC Symposium on Control in Transportation Systems," (2009). |
[19] |
L. Mihaylova, R. Boel and A. Hegyi, Freeway traffic estimation within particle filtering framework, Automatica J. IFAC, 43 (2007), 290-300.
doi: 10.1016/j.automatica.2006.08.023. |
[20] |
L. Munoz, X. Sun, D. Sun, G. Gomez and R. Horowitz, Methodological calibration of the cell transmission model, in "Proceedings of the American Control Conference," 1, 2004, 798-803. |
[21] |
A. Muralidharan, G. Dervisoglu and R. Horowitz, Probabilistic graphical models of fundamental diagram parameters for freeway traffic simulations, in "Proceedings of the 90th Annual Meeting," Washington, D.C., (2011), Transportation Research Board.
doi: 10.3141/2249-10. |
[22] |
P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[23] |
S. Smulders, Control of freeway traffic flow by variable speed signs, Transportation Research Part B: Methodological, 24 (1990), 111-132.
doi: 10.1016/0191-2615(90)90023-R. |
[24] |
Transportation Research Board, "HCM 2010: Highway Capacity Manual," (2010). |
[25] |
, , ().
|
[26] |
Y. Wang, M. Papageorgiou and A. Messmer, RENAISSANCE - A unified macroscopic model-based approach to real-time freeway network traffic surveillance, Transportation Research Part C: Emerging Technologies, 14 (2006), 190-212.
doi: 10.1016/j.trc.2006.06.001. |
[27] |
Y. Wang, M. Papageorgiou and A. Messmer, Real-time freeway traffic state estimation based on extended kalman filter: A case study, Transportation Science, 41 (2007), 167-181.
doi: 10.1287/trsc.1070.0194. |
[28] |
D. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli and A. Bayen, A traffic model for velocity data assimilation, Appl. Math. Res. Express. AMRX, 2010 (2010), 1-35. |
[29] |
J. Yan, Parameter identification of freeway traffic flow model and adaptive ramp metering, in "2009 Second International Symposium on Electronic Commerce and Security," (2009), 235-238.
doi: 10.1109/ISECS.2009.39. |
[1] |
Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004 |
[2] |
Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683 |
[3] |
Luisa Fermo, Andrea Tosin. Fundamental diagrams for kinetic equations of traffic flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 449-462. doi: 10.3934/dcdss.2014.7.449 |
[4] |
Zhiyan Ding, Qin Li. Constrained Ensemble Langevin Monte Carlo. Foundations of Data Science, 2022, 4 (1) : 37-70. doi: 10.3934/fods.2021034 |
[5] |
Azmy S. Ackleh, Jeremy J. Thibodeaux. Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences & Engineering, 2008, 5 (4) : 601-616. doi: 10.3934/mbe.2008.5.601 |
[6] |
Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291 |
[7] |
Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems and Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81 |
[8] |
Theodore Papamarkou, Alexey Lindo, Eric B. Ford. Geometric adaptive Monte Carlo in random environment. Foundations of Data Science, 2021, 3 (2) : 201-224. doi: 10.3934/fods.2021014 |
[9] |
Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd. Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 553-576. doi: 10.3934/mbe.2012.9.553 |
[10] |
Alexandre M. Bayen, Hélène Frankowska, Jean-Patrick Lebacque, Benedetto Piccoli, H. Michael Zhang. Special issue on Mathematics of Traffic Flow Modeling, Estimation and Control. Networks and Heterogeneous Media, 2013, 8 (3) : i-ii. doi: 10.3934/nhm.2013.8.3i |
[11] |
Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335 |
[12] |
Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75 |
[13] |
Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57 |
[14] |
Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427 |
[15] |
Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108 |
[16] |
Michael Herty, J.-P. Lebacque, S. Moutari. A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4 (4) : 813-826. doi: 10.3934/nhm.2009.4.813 |
[17] |
Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670 |
[18] |
Zhigang Ren, Shan Guo, Zhipeng Li, Zongze Wu. Adjoint-based parameter and state estimation in 1-D magnetohydrodynamic (MHD) flow system. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1579-1594. doi: 10.3934/jimo.2018022 |
[19] |
Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control and Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012 |
[20] |
Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]