\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic periodicity of flows in time-depending networks

Abstract Related Papers Cited by
  • We consider a linear transport equation on the edges of a network with time-varying coefficients. Using methods for non-autonomous abstract Cauchy problems, we obtain well-posedness of the problem and describe the asymptotic profile of the solutions under certain natural conditions on the network. We further apply our theory to a model used for air traffic flow management.
    Mathematics Subject Classification: Primary: 35R02; Secondary: 47N20, 37B55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Bayazit, Positive evolution families solving nonautonomous difference equations, Positivity, 16 (2012), 653-684.doi: 10.1007/s11117-011-0139-3.

    [2]

    F. Bayazit, On the Asymptotic Behavior of Periodic Evolution Families on Banach Spaces, Ph.D thesis, Eberhard Karls Universität Tübingen, 2012.

    [3]

    A. M. Bayen, R. L. Raffard and C. L. Tomlin, Eulerian network model of air traffic flow in congested areas, Proc. of the American Control Conference, (2004), 5520-5526.

    [4]

    A. M. Bayen, R. L. Raffard and C. L. Tomlin, Adjoint-based control of Eulerian transportation networks: application to air traffic control, Proc. of the American Control Conference, (2004), 5539-5545.

    [5]

    A. M. Bayen, R. L. Raffard and C. L. Tomlin, Adjoint-based control of a new Eulerian network model of air traffic flow, IEEE Transactions on Control Systems Technology, 14 (2006), 804-818.doi: 10.1109/TCST.2006.876904.

    [6]

    B. Dorn, Semigroups for flows in infinite networks, Semigroup Forum, 76 (2008), 341-356.doi: 10.1007/s00233-007-9036-2.

    [7]

    B. Dorn, Flows in Infinite Networks - A Semigroup Approach, Ph.D thesis, Eberhard Karls Universität Tübingen, 2008.

    [8]

    B. Dorn, V. Keicher and E. Sikolya, Asymptotic periodicity of recurrent flows in infinite networks, Math. Z., 263 (2009), 69-87.doi: 10.1007/s00209-008-0410-x.

    [9]

    B. Dorn, M. Kramar Fijavž, R. Nagel and A. Radl, The semigroup approach to flows in networks, Physica D, 239 (2010), 1416-1421.doi: 10.1016/j.physd.2009.06.012.

    [10]

    K.-J. Engel, M. Kramar Fijavž, B. Klöss, R. Nagel and E. Sikolya, Maximal controllability for boundary control problems, Appl. Math. Optim., 62 (2010), 205-227.doi: 10.1007/s00245-010-9101-1.

    [11]

    K.-J. Engel, M. Kramar Fijavž, R. Nagel and E. Sikolya, Vertex control of flows in networks, J. Networks Heterogeneous Media, 3 (2008), 709-722.doi: 10.3934/nhm.2008.3.709.

    [12]

    K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math. 194, Springer-Verlag, 2000.

    [13]

    M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical Sciences, 2006.

    [14]

    M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162.doi: 10.1007/s00209-004-0695-3.

    [15]

    M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. of the Royal Society of London, 229 (1956), 317-345.doi: 10.1098/rspa.1955.0089.

    [16]

    T. Mátrai and E. Sikolya, Asymptotic behavior of flows in networks, Forum Math., 19 (2007), 429-461.doi: 10.1515/FORUM.2007.018.

    [17]

    P. K. Menon, G. D. Sweriduk and K. Bilimoria, A new approach for modeling, analysis and control of air traffic flow, AIAA Journal of Guidance, Control and Dynamics, 27 (2004), 737-744.

    [18]

    H. Minc, Nonnegative Matrices, John Wiley & Sons, 1988.

    [19]

    R. Nagel, Semigroup methods for nonautonomous Cauchy problems, Evolution Equations, Lecture Notes in Pure and Appl. Math., 168 (1995), 301-316.

    [20]

    R. Nagel and G. Nickel, Well-posedness for nonautonomous abstract Cauchy problems, Prog. Nonlinear Differential Equations Appl., 50 (2002), 279-293.

    [21]

    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983.doi: 10.1007/978-1-4612-5561-1.

    [22]

    A. Radl, Transport processes in networks with scattering ramification nodes, J. Appl. Funct. Anal., 3 (2008), 461-483.

    [23]

    P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51.doi: 10.1287/opre.4.1.42.

    [24]

    C.-A. Robelin, D. Sun, G. Wu and A. M. Bayen, MILP control of aggregate Eulerian network airspace models, Proc. of the American Control Conference, (2006), 5257-5262.doi: 10.1109/ACC.2006.1657558.

    [25]

    H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss., 215, Springer-Verlag, 1974.

    [26]

    E. Sikolya, Flows in networks with dynamic ramification nodes, J. Evol. Equ., 5 (2005), 441-463.doi: 10.1007/s00028-005-0221-z.

    [27]

    B. Sridhar and P. K. Menon, Comparison of linear dynamic models for air traffic flow management, Proc. 16th IFAC World Congress, (2005).

    [28]

    D. Sun, I. S. Strub and A. M. Bayen, Comparison of the performance of four Eulerian network flow models for strategic air traffic management, Netw. Heterog. Media, 2 (2007), 569-595.doi: 10.3934/nhm.2007.2.569.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(264) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return