March  2013, 8(1): 9-22. doi: 10.3934/nhm.2013.8.9

A nonlinear partial differential equation for the volume preserving mean curvature flow

1. 

Department of Applied Mathematics, University of Crete, 714 09 Heraklion

Received  September 2011 Published  April 2013

We analyze the evolution of multi-dimensional normal graphs over the unit sphere under volume preserving mean curvature flow and derive a non-linear partial differential equation in polar coordinates. Furthermore, we construct finite difference numerical schemes and present numerical results for the evolution of non-convex closed plane curves under this flow, to observe that they become convex very fast.
Citation: Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks and Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9
References:
[1]

N. D. Alikakos and A. Freire, The normalized mean curvature flow for a small bubble in a Riemannian manifold, J. Differential Geom., 64 (2003), 247-303.

[2]

D. C. Antonopoulou, G. D. Karali and I. M. Sigal, Stability of spheres under volume preserving mean curvature flow, Dynamics of PDE, 7 (2010), 327-344.

[3]

J. Escher and G. Simonett, A center manifold analysis for the mullins-sekerka model, J. Differential Eq., 143 (1998), 267-292. doi: 10.1006/jdeq.1997.3373.

[4]

J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres, Proc. Amer. Math. Soc., 126 (1998), 2789-2796. doi: 10.1090/S0002-9939-98-04727-3.

[5]

M. Gage, On an area-preserving evolution equation for plane curves, Nonlinear Problems in Geometry, D. M. DeTurck, editor, Contemp. Math., 51 (1986), AMS, Providence, 51-62. doi: 10.1090/conm/051/848933.

[6]

M. Gage and R. Hamilton, The Heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69-96.

[7]

Z. Gang and I. M. Sigal, Neck pinching dynamics under mean curvature flow, J. Geom. Anal., 19 (2009), 36-80. doi: 10.1007/s12220-008-9050-y.

[8]

M. A. Grayson, The Heat Equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314.

[9]

G. Huisken, The volume preserving mean curvature flow, J. Reine Angew. Math., 382 (1987), 35-48. doi: 10.1515/crll.1987.382.35.

[10]

E. Kreyszig, "Differential Geometry," Dover Publications, New York, 1991.

[11]

N. Shimakura, "Partial Differential Operators of Elliptic Type," Translations of Mathematical Monographs, 99, 1992.

[12]

M. Struwe, Geometric evolution problems. Nonlinear partial differential equations in differential geometry, IAS/Park City Math. Ser., 2, Amer. Math. Soc., Providence, RI, Park City, UT, (1992), 257-339.

show all references

References:
[1]

N. D. Alikakos and A. Freire, The normalized mean curvature flow for a small bubble in a Riemannian manifold, J. Differential Geom., 64 (2003), 247-303.

[2]

D. C. Antonopoulou, G. D. Karali and I. M. Sigal, Stability of spheres under volume preserving mean curvature flow, Dynamics of PDE, 7 (2010), 327-344.

[3]

J. Escher and G. Simonett, A center manifold analysis for the mullins-sekerka model, J. Differential Eq., 143 (1998), 267-292. doi: 10.1006/jdeq.1997.3373.

[4]

J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres, Proc. Amer. Math. Soc., 126 (1998), 2789-2796. doi: 10.1090/S0002-9939-98-04727-3.

[5]

M. Gage, On an area-preserving evolution equation for plane curves, Nonlinear Problems in Geometry, D. M. DeTurck, editor, Contemp. Math., 51 (1986), AMS, Providence, 51-62. doi: 10.1090/conm/051/848933.

[6]

M. Gage and R. Hamilton, The Heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69-96.

[7]

Z. Gang and I. M. Sigal, Neck pinching dynamics under mean curvature flow, J. Geom. Anal., 19 (2009), 36-80. doi: 10.1007/s12220-008-9050-y.

[8]

M. A. Grayson, The Heat Equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314.

[9]

G. Huisken, The volume preserving mean curvature flow, J. Reine Angew. Math., 382 (1987), 35-48. doi: 10.1515/crll.1987.382.35.

[10]

E. Kreyszig, "Differential Geometry," Dover Publications, New York, 1991.

[11]

N. Shimakura, "Partial Differential Operators of Elliptic Type," Translations of Mathematical Monographs, 99, 1992.

[12]

M. Struwe, Geometric evolution problems. Nonlinear partial differential equations in differential geometry, IAS/Park City Math. Ser., 2, Amer. Math. Soc., Providence, RI, Park City, UT, (1992), 257-339.

[1]

Jan Prüss, Gieri Simonett, Rico Zacher. On normal stability for nonlinear parabolic equations. Conference Publications, 2009, 2009 (Special) : 612-621. doi: 10.3934/proc.2009.2009.612

[2]

Nicolas Dirr, Federica Dragoni, Max von Renesse. Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach. Communications on Pure and Applied Analysis, 2010, 9 (2) : 307-326. doi: 10.3934/cpaa.2010.9.307

[3]

Yoshikazu Giga, Hiroyoshi Mitake, Hung V. Tran. Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3983-3999. doi: 10.3934/dcdsb.2019228

[4]

Marie Henry, Danielle Hilhorst, Masayasu Mimura. A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 125-154. doi: 10.3934/dcdss.2011.4.125

[5]

Jinju Xu. A new proof of gradient estimates for mean curvature equations with oblique boundary conditions. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1719-1742. doi: 10.3934/cpaa.2016010

[6]

Alexander Pankov. Nonlinear Schrödinger Equations on Periodic Metric Graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 697-714. doi: 10.3934/dcds.2018030

[7]

Liangjun Weng. The interior gradient estimate for some nonlinear curvature equations. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1601-1612. doi: 10.3934/cpaa.2019076

[8]

Changfeng Gui, Huaiyu Jian, Hongjie Ju. Properties of translating solutions to mean curvature flow. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 441-453. doi: 10.3934/dcds.2010.28.441

[9]

Giulio Colombo, Luciano Mari, Marco Rigoli. Remarks on mean curvature flow solitons in warped products. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1957-1991. doi: 10.3934/dcdss.2020153

[10]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[11]

Noriaki Yamazaki. Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems. Conference Publications, 2005, 2005 (Special) : 920-929. doi: 10.3934/proc.2005.2005.920

[12]

Tôn Việt Tạ. Existence results for linear evolution equations of parabolic type. Communications on Pure and Applied Analysis, 2018, 17 (3) : 751-785. doi: 10.3934/cpaa.2018039

[13]

Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4987-5008. doi: 10.3934/dcds.2021065

[14]

Tobias H. Colding and Bruce Kleiner. Singularity structure in mean curvature flow of mean-convex sets. Electronic Research Announcements, 2003, 9: 121-124.

[15]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

[16]

Wei Wang, Kai Liu, Xiulian Wang. Sensitivity to small delays of mean square stability for stochastic neutral evolution equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2403-2418. doi: 10.3934/cpaa.2020105

[17]

J. P. Lessard, J. D. Mireles James. A functional analytic approach to validated numerics for eigenvalues of delay equations. Journal of Computational Dynamics, 2020, 7 (1) : 123-158. doi: 10.3934/jcd.2020005

[18]

H. Gajewski, I. V. Skrypnik. To the uniqueness problem for nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 315-336. doi: 10.3934/dcds.2004.10.315

[19]

Wolfgang Walter. Nonlinear parabolic differential equations and inequalities. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 451-468. doi: 10.3934/dcds.2002.8.451

[20]

Risei Kano, Yusuke Murase. Solvability of nonlinear evolution equations generated by subdifferentials and perturbations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 75-93. doi: 10.3934/dcdss.2014.7.75

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]