March  2013, 8(1): 9-22. doi: 10.3934/nhm.2013.8.9

A nonlinear partial differential equation for the volume preserving mean curvature flow

1. 

Department of Applied Mathematics, University of Crete, 714 09 Heraklion

Received  September 2011 Published  April 2013

We analyze the evolution of multi-dimensional normal graphs over the unit sphere under volume preserving mean curvature flow and derive a non-linear partial differential equation in polar coordinates. Furthermore, we construct finite difference numerical schemes and present numerical results for the evolution of non-convex closed plane curves under this flow, to observe that they become convex very fast.
Citation: Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9
References:
[1]

N. D. Alikakos and A. Freire, The normalized mean curvature flow for a small bubble in a Riemannian manifold,, J. Differential Geom., 64 (2003), 247.   Google Scholar

[2]

D. C. Antonopoulou, G. D. Karali and I. M. Sigal, Stability of spheres under volume preserving mean curvature flow,, Dynamics of PDE, 7 (2010), 327.   Google Scholar

[3]

J. Escher and G. Simonett, A center manifold analysis for the mullins-sekerka model,, J. Differential Eq., 143 (1998), 267.  doi: 10.1006/jdeq.1997.3373.  Google Scholar

[4]

J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres,, Proc. Amer. Math. Soc., 126 (1998), 2789.  doi: 10.1090/S0002-9939-98-04727-3.  Google Scholar

[5]

M. Gage, On an area-preserving evolution equation for plane curves, Nonlinear Problems in Geometry, D. M. DeTurck, editor,, Contemp. Math., 51 (1986), 51.  doi: 10.1090/conm/051/848933.  Google Scholar

[6]

M. Gage and R. Hamilton, The Heat equation shrinking convex plane curves,, J. Differential Geom., 23 (1986), 69.   Google Scholar

[7]

Z. Gang and I. M. Sigal, Neck pinching dynamics under mean curvature flow,, J. Geom. Anal., 19 (2009), 36.  doi: 10.1007/s12220-008-9050-y.  Google Scholar

[8]

M. A. Grayson, The Heat Equation shrinks embedded plane curves to round points,, J. Differential Geom., 26 (1987), 285.   Google Scholar

[9]

G. Huisken, The volume preserving mean curvature flow,, J. Reine Angew. Math., 382 (1987), 35.  doi: 10.1515/crll.1987.382.35.  Google Scholar

[10]

E. Kreyszig, "Differential Geometry,", Dover Publications, (1991).   Google Scholar

[11]

N. Shimakura, "Partial Differential Operators of Elliptic Type,", Translations of Mathematical Monographs, 99 (1992).   Google Scholar

[12]

M. Struwe, Geometric evolution problems. Nonlinear partial differential equations in differential geometry,, IAS/Park City Math. Ser., (1992), 257.   Google Scholar

show all references

References:
[1]

N. D. Alikakos and A. Freire, The normalized mean curvature flow for a small bubble in a Riemannian manifold,, J. Differential Geom., 64 (2003), 247.   Google Scholar

[2]

D. C. Antonopoulou, G. D. Karali and I. M. Sigal, Stability of spheres under volume preserving mean curvature flow,, Dynamics of PDE, 7 (2010), 327.   Google Scholar

[3]

J. Escher and G. Simonett, A center manifold analysis for the mullins-sekerka model,, J. Differential Eq., 143 (1998), 267.  doi: 10.1006/jdeq.1997.3373.  Google Scholar

[4]

J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres,, Proc. Amer. Math. Soc., 126 (1998), 2789.  doi: 10.1090/S0002-9939-98-04727-3.  Google Scholar

[5]

M. Gage, On an area-preserving evolution equation for plane curves, Nonlinear Problems in Geometry, D. M. DeTurck, editor,, Contemp. Math., 51 (1986), 51.  doi: 10.1090/conm/051/848933.  Google Scholar

[6]

M. Gage and R. Hamilton, The Heat equation shrinking convex plane curves,, J. Differential Geom., 23 (1986), 69.   Google Scholar

[7]

Z. Gang and I. M. Sigal, Neck pinching dynamics under mean curvature flow,, J. Geom. Anal., 19 (2009), 36.  doi: 10.1007/s12220-008-9050-y.  Google Scholar

[8]

M. A. Grayson, The Heat Equation shrinks embedded plane curves to round points,, J. Differential Geom., 26 (1987), 285.   Google Scholar

[9]

G. Huisken, The volume preserving mean curvature flow,, J. Reine Angew. Math., 382 (1987), 35.  doi: 10.1515/crll.1987.382.35.  Google Scholar

[10]

E. Kreyszig, "Differential Geometry,", Dover Publications, (1991).   Google Scholar

[11]

N. Shimakura, "Partial Differential Operators of Elliptic Type,", Translations of Mathematical Monographs, 99 (1992).   Google Scholar

[12]

M. Struwe, Geometric evolution problems. Nonlinear partial differential equations in differential geometry,, IAS/Park City Math. Ser., (1992), 257.   Google Scholar

[1]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[5]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[8]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[9]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[10]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[11]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[12]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[13]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[14]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[15]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[16]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[17]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[18]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]