• Previous Article
    Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia
  • NHM Home
  • This Issue
  • Next Article
    On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth
December  2013, 8(4): 913-941. doi: 10.3934/nhm.2013.8.913

Homogenization of high-contrast and non symmetric conductivities for non periodic columnar structures

1. 

Centre de Mathématiques, I.N.S.A. de Rennes & I.R.M.A.R., Rennes Cedex, France

2. 

I.R.M.A.R., Université de Rennes 1, Rennes Cedex, France

Received  February 2013 Published  November 2013

In this paper we determine, in dimension three, the effective conductivities of non periodic and high-contrast two-phase cylindrical composites, placed in a constant magnetic field, without any assumption on the geometry of their cross sections. Our method, in the spirit of the H-convergence of Murat-Tartar, is based on a compactness result and the cylindrical nature of the microstructure. The homogenized laws we obtain extend those of the periodic fibre-reinforcing case of [17] to the case of periodic and non periodic composites with more general transversal geometries.
Citation: Mohamed Camar-Eddine, Laurent Pater. Homogenization of high-contrast and non symmetric conductivities for non periodic columnar structures. Networks & Heterogeneous Media, 2013, 8 (4) : 913-941. doi: 10.3934/nhm.2013.8.913
References:
[1]

M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Non local effects,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 407.   Google Scholar

[2]

A. Bensoussan, J.-L. Lions and G. C. Papanicolaou, Asymptotic Analysis for Periodic Structures,, North-Holland Pub. Co., (1978).   Google Scholar

[3]

D. J. Bergman, Self-duality and the low field Hall effect in 2D and 3D metal-insulator composites,, Percolation Structures and Processes, 5 (1983), 297.   Google Scholar

[4]

D. J. Bergman, X. Li and Y. M. Strelniker, Macroscopic conductivity tensor of a three-dimensional composite with a one- or two-dimensional microstructure,, Phys. Rev. B, 71 (2005).  doi: 10.1103/PhysRevB.71.035120.  Google Scholar

[5]

D. J. Bergman and Y. M. Strelniker, Magnetotransport in conducting composite films with a disordered columnar microstructure and an in-plane magnetic field,, Phys. Rev. B, 60 (1999), 13016.  doi: 10.1103/PhysRevB.60.13016.  Google Scholar

[6]

D. J. Bergman and Y. M. Strelniker, Strong-field magnetotransport of conducting composites with a columnar microstructure,, Phys. Rev. B, 59 (1999), 2180.  doi: 10.1103/PhysRevB.59.2180.  Google Scholar

[7]

D. J. Bergman and Y. M. Strelniker, Duality transformation in a three dimensional conducting medium with two dimensional heterogeneity and an in-plane magnetic field,, Phys. Rev. Lett., 80 (1998), 3356.  doi: 10.1103/PhysRevLett.80.3356.  Google Scholar

[8]

D. J. Bergman, Y. M. Strelniker and A. K. Sarychev, Exact relations between magnetoresistivity tensor components of conducting composites with a columnar microstructure,, Phys. Rev. B, 61 (2000), 6288.  doi: 10.1103/PhysRevB.61.6288.  Google Scholar

[9]

D. J. Bergman, Y. M. Strelniker and A. K. Sarychev, Recent advances in strong field magneto-transport in a composite medium,, Physica A, 241 (1997), 278.  doi: 10.1016/S0378-4371(97)00095-2.  Google Scholar

[10]

M. Briane, Nonlocal effects in two-dimensional conductivity,, Arch. Rational Mech. Anal., 182 (2006), 255.  doi: 10.1007/s00205-006-0427-4.  Google Scholar

[11]

M. Briane, Homogenization of high-conductivity periodic problems: Application to a general distribution of one-directional fibers,, SIAM Journal on Mathematical Analysis, 35 (2003), 33.  doi: 10.1137/S0036141001398666.  Google Scholar

[12]

M. Briane, Homogenization of non-uniformly bounded operators: Critical barrier for nonlocal effects,, Arch. Rational Mech. Anal., 164 (2002), 73.  doi: 10.1007/s002050200196.  Google Scholar

[13]

M. Briane and J. Casado-Díaz, Two-dimensional div-curl results. Application to the lack of nonlocal effects in homogenization,, Com. Part. Diff. Equ., 32 (2007), 935.  doi: 10.1080/03605300600910423.  Google Scholar

[14]

M. Briane and D. Manceau, Duality results in the homogenization of two-dimensional high-contrast conductivities,, Networks and Heterogeneous Media, 3 (2008), 509.  doi: 10.3934/nhm.2008.3.509.  Google Scholar

[15]

M. Briane, D. Manceau and G. W. Milton, Homogenization of the two-dimensional Hall effect,, J. Math. Anal. Appl., 339 (2008), 1468.  doi: 10.1016/j.jmaa.2007.07.044.  Google Scholar

[16]

M. Briane and G. W. Milton, Homogenization of the three-dimensional Hall effect and change of sign of the Hall coefficient,, Arch. Ratio. Mech. Anal., 193 (2009), 715.  doi: 10.1007/s00205-008-0200-y.  Google Scholar

[17]

M. Briane and L. Pater, Homogenization of high-contrast two-phase conductivities perturbed by a magnetic field. Comparison between dimension two and dimension three,, Journal of Mathematical Analysis and Applications, 393 (2012), 563.  doi: 10.1016/j.jmaa.2011.12.059.  Google Scholar

[18]

M. Briane and N. Tchou, Fibered microstructures for some nonlocal Dirichlet forms,, Ann. Sc. Norm. Super. Pisa, 30 (2001), 681.   Google Scholar

[19]

V. N. Fenchenko, E. Ya. Khruslov, Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness,, Dokl. AN Ukr. SSR, 4 (1981), 24.   Google Scholar

[20]

Y. Grabovsky, G. W. Milton and D. S. Sage, Exact relations for effective tensors of polycrystals: Necessary conditions and sufficient conditions,, Comm. Pure Appl. Math., 53 (2000), 300.   Google Scholar

[21]

Y. Grabovsky, An application of the general theory of exact relations to fiber-reinforced conducting composites with Hall effect,, Mechanics of Materials, 41 (2009), 456.  doi: 10.1137/080721455.  Google Scholar

[22]

Y. Grabovsky, Exact relations for effective conductivity of fiber-reinforced conducting composites with the Hall effect via a general theory,, SIAM J. Math. Analysis, 41 (2009), 973.  doi: 10.1137/080721455.  Google Scholar

[23]

Y. Grabovsky and G. W. Milton, Exact relations for composites: Towards a complete solution,, Doc. Math. J. DMV Extra Volume ICM, III (1998), 623.   Google Scholar

[24]

E. H. Hall, On a new action of the magnet on electric currents,, Amer. J. Math., 2 (1879), 287.  doi: 10.2307/2369245.  Google Scholar

[25]

E. Ya. Khruslov, Homogenized models of composite media,, Composite Media and Homogenization Theory (Trieste, 5 (1991), 159.  doi: 10.1007/978-1-4684-6787-1_10.  Google Scholar

[26]

E. Ya. Khruslov and V. A. Marchenko, Homogenization of Partial Differential Equations,, Progress in Mathematical Physics, (2006).   Google Scholar

[27]

L. Landau and E. Lifshitz, Électrodynamique des Milieux Continus,, Éditions Mir, (1969).   Google Scholar

[28]

G. W. Milton, Classical Hall effect in two-dimensional composites: A characterization of the set of realizable effective conductivity tensors,, Phys. Rev. B, 38 (1988), 11296.  doi: 10.1103/PhysRevB.38.11296.  Google Scholar

[29]

G. W. Milton, The Theory of Composites,, Cambridge Monographs on Applied and Computational Mathematics, (2002).  doi: 10.1017/CBO9780511613357.  Google Scholar

[30]

F. Murat and L. Tartar, H-convergence,, Mimeographed notes, (1978).   Google Scholar

[31]

F. Murat and L. Tartar, H-convergence,, Topics in the Mathematical Modelling of Composite Materials, (1998), 21.   Google Scholar

[32]

M. A. Omar, Elementary Solid State Physics: Principles and Applications,, World Student Series Edition, (1975).   Google Scholar

[33]

L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains,, Arch. Rational Mech. Anal., 5 (1960), 286.  doi: 10.1007/BF00252910.  Google Scholar

[34]

S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche,, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 571.   Google Scholar

show all references

References:
[1]

M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Non local effects,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 407.   Google Scholar

[2]

A. Bensoussan, J.-L. Lions and G. C. Papanicolaou, Asymptotic Analysis for Periodic Structures,, North-Holland Pub. Co., (1978).   Google Scholar

[3]

D. J. Bergman, Self-duality and the low field Hall effect in 2D and 3D metal-insulator composites,, Percolation Structures and Processes, 5 (1983), 297.   Google Scholar

[4]

D. J. Bergman, X. Li and Y. M. Strelniker, Macroscopic conductivity tensor of a three-dimensional composite with a one- or two-dimensional microstructure,, Phys. Rev. B, 71 (2005).  doi: 10.1103/PhysRevB.71.035120.  Google Scholar

[5]

D. J. Bergman and Y. M. Strelniker, Magnetotransport in conducting composite films with a disordered columnar microstructure and an in-plane magnetic field,, Phys. Rev. B, 60 (1999), 13016.  doi: 10.1103/PhysRevB.60.13016.  Google Scholar

[6]

D. J. Bergman and Y. M. Strelniker, Strong-field magnetotransport of conducting composites with a columnar microstructure,, Phys. Rev. B, 59 (1999), 2180.  doi: 10.1103/PhysRevB.59.2180.  Google Scholar

[7]

D. J. Bergman and Y. M. Strelniker, Duality transformation in a three dimensional conducting medium with two dimensional heterogeneity and an in-plane magnetic field,, Phys. Rev. Lett., 80 (1998), 3356.  doi: 10.1103/PhysRevLett.80.3356.  Google Scholar

[8]

D. J. Bergman, Y. M. Strelniker and A. K. Sarychev, Exact relations between magnetoresistivity tensor components of conducting composites with a columnar microstructure,, Phys. Rev. B, 61 (2000), 6288.  doi: 10.1103/PhysRevB.61.6288.  Google Scholar

[9]

D. J. Bergman, Y. M. Strelniker and A. K. Sarychev, Recent advances in strong field magneto-transport in a composite medium,, Physica A, 241 (1997), 278.  doi: 10.1016/S0378-4371(97)00095-2.  Google Scholar

[10]

M. Briane, Nonlocal effects in two-dimensional conductivity,, Arch. Rational Mech. Anal., 182 (2006), 255.  doi: 10.1007/s00205-006-0427-4.  Google Scholar

[11]

M. Briane, Homogenization of high-conductivity periodic problems: Application to a general distribution of one-directional fibers,, SIAM Journal on Mathematical Analysis, 35 (2003), 33.  doi: 10.1137/S0036141001398666.  Google Scholar

[12]

M. Briane, Homogenization of non-uniformly bounded operators: Critical barrier for nonlocal effects,, Arch. Rational Mech. Anal., 164 (2002), 73.  doi: 10.1007/s002050200196.  Google Scholar

[13]

M. Briane and J. Casado-Díaz, Two-dimensional div-curl results. Application to the lack of nonlocal effects in homogenization,, Com. Part. Diff. Equ., 32 (2007), 935.  doi: 10.1080/03605300600910423.  Google Scholar

[14]

M. Briane and D. Manceau, Duality results in the homogenization of two-dimensional high-contrast conductivities,, Networks and Heterogeneous Media, 3 (2008), 509.  doi: 10.3934/nhm.2008.3.509.  Google Scholar

[15]

M. Briane, D. Manceau and G. W. Milton, Homogenization of the two-dimensional Hall effect,, J. Math. Anal. Appl., 339 (2008), 1468.  doi: 10.1016/j.jmaa.2007.07.044.  Google Scholar

[16]

M. Briane and G. W. Milton, Homogenization of the three-dimensional Hall effect and change of sign of the Hall coefficient,, Arch. Ratio. Mech. Anal., 193 (2009), 715.  doi: 10.1007/s00205-008-0200-y.  Google Scholar

[17]

M. Briane and L. Pater, Homogenization of high-contrast two-phase conductivities perturbed by a magnetic field. Comparison between dimension two and dimension three,, Journal of Mathematical Analysis and Applications, 393 (2012), 563.  doi: 10.1016/j.jmaa.2011.12.059.  Google Scholar

[18]

M. Briane and N. Tchou, Fibered microstructures for some nonlocal Dirichlet forms,, Ann. Sc. Norm. Super. Pisa, 30 (2001), 681.   Google Scholar

[19]

V. N. Fenchenko, E. Ya. Khruslov, Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness,, Dokl. AN Ukr. SSR, 4 (1981), 24.   Google Scholar

[20]

Y. Grabovsky, G. W. Milton and D. S. Sage, Exact relations for effective tensors of polycrystals: Necessary conditions and sufficient conditions,, Comm. Pure Appl. Math., 53 (2000), 300.   Google Scholar

[21]

Y. Grabovsky, An application of the general theory of exact relations to fiber-reinforced conducting composites with Hall effect,, Mechanics of Materials, 41 (2009), 456.  doi: 10.1137/080721455.  Google Scholar

[22]

Y. Grabovsky, Exact relations for effective conductivity of fiber-reinforced conducting composites with the Hall effect via a general theory,, SIAM J. Math. Analysis, 41 (2009), 973.  doi: 10.1137/080721455.  Google Scholar

[23]

Y. Grabovsky and G. W. Milton, Exact relations for composites: Towards a complete solution,, Doc. Math. J. DMV Extra Volume ICM, III (1998), 623.   Google Scholar

[24]

E. H. Hall, On a new action of the magnet on electric currents,, Amer. J. Math., 2 (1879), 287.  doi: 10.2307/2369245.  Google Scholar

[25]

E. Ya. Khruslov, Homogenized models of composite media,, Composite Media and Homogenization Theory (Trieste, 5 (1991), 159.  doi: 10.1007/978-1-4684-6787-1_10.  Google Scholar

[26]

E. Ya. Khruslov and V. A. Marchenko, Homogenization of Partial Differential Equations,, Progress in Mathematical Physics, (2006).   Google Scholar

[27]

L. Landau and E. Lifshitz, Électrodynamique des Milieux Continus,, Éditions Mir, (1969).   Google Scholar

[28]

G. W. Milton, Classical Hall effect in two-dimensional composites: A characterization of the set of realizable effective conductivity tensors,, Phys. Rev. B, 38 (1988), 11296.  doi: 10.1103/PhysRevB.38.11296.  Google Scholar

[29]

G. W. Milton, The Theory of Composites,, Cambridge Monographs on Applied and Computational Mathematics, (2002).  doi: 10.1017/CBO9780511613357.  Google Scholar

[30]

F. Murat and L. Tartar, H-convergence,, Mimeographed notes, (1978).   Google Scholar

[31]

F. Murat and L. Tartar, H-convergence,, Topics in the Mathematical Modelling of Composite Materials, (1998), 21.   Google Scholar

[32]

M. A. Omar, Elementary Solid State Physics: Principles and Applications,, World Student Series Edition, (1975).   Google Scholar

[33]

L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains,, Arch. Rational Mech. Anal., 5 (1960), 286.  doi: 10.1007/BF00252910.  Google Scholar

[34]

S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche,, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 571.   Google Scholar

[1]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[2]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[3]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[4]

Tong Peng. Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty. Journal of Industrial & Management Optimization, 2021, 17 (2) : 953-970. doi: 10.3934/jimo.2020006

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Alain Damlamian, Klas Pettersson. Homogenization of oscillating boundaries. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 197-219. doi: 10.3934/dcds.2009.23.197

[7]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[8]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[9]

Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021005

[10]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[11]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[12]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[13]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[14]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[15]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[16]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[17]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[18]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[19]

Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021020

[20]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]