\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The derivation of continuum limits of neuronal networks with gap-junction couplings

Abstract / Introduction Related Papers Cited by
  • We consider an idealized network, formed by $N$ neurons individually described by the FitzHugh-Nagumo equations and connected by electrical synapses. The limit for $N \to \infty$ of the resulting discrete model is thoroughly investigated, with the aim of identifying a model for a continuum of neurons having an equivalent behaviour. Two strategies for passing to the limit are analysed: i) a more conventional approach, based on a fixed nearest-neighbour connection topology accompanied by a suitable scaling of the diffusion coefficients; ii) a new approach, in which the number of connections to any given neuron varies with $N$ according to a precise law, which simultaneously guarantees the non-triviality of the limit and the locality of neuronal interactions. Both approaches yield in the limit a pde-based model, in which the distribution of action potential obeys a nonlinear reaction-convection-diffusion equation; convection accounts for the possible lack of symmetry in the connection topology. Several convergence issues are discussed, both theoretically and numerically.
    Mathematics Subject Classification: Primary: 34C60, 35K57; Secondary: 92C42, 05C90.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. B. Bapat, D. Kalita and S. Pati, On weighted directed graphs, Linear Algebra Appl., 436 (2012), 99-111.doi: 10.1016/j.laa.2011.06.035.

    [2]

    A. Cattani, "Multispecies'' Models to Describe Large Neuronal Networks, Ph.D. Thesis Polytechnic University of Turin, 2014.

    [3]

    P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, in Evolution Equations, Semigroups and Functional Analysis (Milano, 2000), Progress in Nonlinear Differential Equations and their Applications, 50, Birkhäuser, Basel, 2002, 49-78.

    [4]

    G. B. Ermentrout and D. H Terman, Mathematical Foundations of Neuroscience, 1st edition, Springer, New York, 2010.doi: 10.1007/978-0-387-87708-2.

    [5]

    R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1 (1961), 445-466.doi: 10.1016/S0006-3495(61)86902-6.

    [6]

    R. FitzHugh, Motion picture of nerve impulse propagation using computer animation, J. Appl. Physiol., 25 (1968), 628-630.

    [7]

    M. Galarreta and S. Hestrin, Electrical synapses between Gaba-Releasing interneurons, Nature Reviews Neuroscience, 2 (2001), 425-433.doi: 10.1038/35077566.

    [8]

    A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application in conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544.doi: 10.1016/S0092-8240(05)80004-7.

    [9]

    J. Keener and J. Sneyd, Mathematical Physiology, 1st edition, Springer-Verlag, New York, 1998.

    [10]

    E. Marder, Electrical synapses: rectification demystified, Current Biology: CB, 19 (2009), R34-R35.doi: 10.1016/j.cub.2008.11.008.

    [11]

    J. D. Murray, Mathematical Biology I, An Introduction, 3rd edition, Springer-Verlag, New York, 2002.

    [12]

    S. Sanfelici, Convergence of the Galerkin approximation of a degenerate evolution problem in electrocardiology, Numer. Methods Partial Differential Equations, 18 (2002), 218-240.doi: 10.1002/num.1000.

    [13]

    A. C. Scott, The electrophysics of a nerve fiber, Review of Modern Physics, 47 (1975), 487-533.

    [14]

    J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994.doi: 10.1007/978-1-4612-0873-0.

    [15]

    P. Wallisch, M. Lusignan, M. Benayoun, T. I. Baker, A. S. Dickey and N. G. Hatsopoulos, Matlab for Neuroscientists, Elsevier/Academic Press, Amsterdam, 2009.

    [16]

    Y. C. Yu, S. He, S. Chen, Y. Fu, K. N. Brown, X.-H. Yao, J. Ma, K. P. Gao, G. E. Sosinsky, K. Huang and S. H. Shi, Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly, Nature, 486 (2012), 113-117.doi: 10.1038/nature10958.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(111) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return