-
Previous Article
Motion of discrete interfaces in low-contrast periodic media
- NHM Home
- This Issue
-
Next Article
Computational models for fluid exchange between microcirculation and tissue interstitium
Constant in two-dimensional $p$-compliance-network problem
1. | International Centre for Theoretical Physics, Strada Costiera,11, I - 34151 Trieste |
References:
[1] |
D. Bucur and P. Trebeschi, Shape optimization governed by nonlinear state equations, Proc. Roy. Soc. Edinburgh - A, 128 (1998), 945-963.
doi: 10.1017/S0308210500030006. |
[2] |
G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks, Networks and Heterogeneous Media, 2 (2007), 761-777.
doi: 10.3934/nhm.2007.2.761. |
[3] |
G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem, ESAIM Control Optimization and Calculus of Variations, 12 (2006), 752-769.
doi: 10.1051/cocv:2006020. |
[4] |
G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser, Basel, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[5] |
S. Mosconi and P. Tilli, $\Gamma$-convergence for the irrigation problem, J. Conv. Anal., 12 (2005), 145-158. |
[6] |
P. Tilli, Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length, Networks and Heterogeneous Media, 7 (2012), 127-136.
doi: 10.3934/nhm.2012.7.127. |
[7] |
W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate texts in Mathematics, 120, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4612-1015-3. |
show all references
References:
[1] |
D. Bucur and P. Trebeschi, Shape optimization governed by nonlinear state equations, Proc. Roy. Soc. Edinburgh - A, 128 (1998), 945-963.
doi: 10.1017/S0308210500030006. |
[2] |
G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks, Networks and Heterogeneous Media, 2 (2007), 761-777.
doi: 10.3934/nhm.2007.2.761. |
[3] |
G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem, ESAIM Control Optimization and Calculus of Variations, 12 (2006), 752-769.
doi: 10.1051/cocv:2006020. |
[4] |
G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser, Basel, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[5] |
S. Mosconi and P. Tilli, $\Gamma$-convergence for the irrigation problem, J. Conv. Anal., 12 (2005), 145-158. |
[6] |
P. Tilli, Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length, Networks and Heterogeneous Media, 7 (2012), 127-136.
doi: 10.3934/nhm.2012.7.127. |
[7] |
W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate texts in Mathematics, 120, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4612-1015-3. |
[1] |
Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355 |
[2] |
Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017 |
[3] |
Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679 |
[4] |
Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations and Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011 |
[5] |
Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623 |
[6] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 1-21. doi: 10.3934/dcdss.2021006 |
[7] |
Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427 |
[8] |
Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2101-2116. doi: 10.3934/cpaa.2021059 |
[9] |
Lorenza D'Elia. $ \Gamma $-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks and Heterogeneous Media, 2022, 17 (1) : 15-45. doi: 10.3934/nhm.2021022 |
[10] |
Markus Muhr, Vanja Nikolić, Barbara Wohlmuth, Linus Wunderlich. Isogeometric shape optimization for nonlinear ultrasound focusing. Evolution Equations and Control Theory, 2019, 8 (1) : 163-202. doi: 10.3934/eect.2019010 |
[11] |
Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055 |
[12] |
Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625 |
[13] |
Chunlei Zhang, Qin Sheng, Raúl Ordóñez. Notes on the convergence and applications of surrogate optimization. Conference Publications, 2005, 2005 (Special) : 947-956. doi: 10.3934/proc.2005.2005.947 |
[14] |
Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825 |
[15] |
Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069 |
[16] |
Lekbir Afraites, Marc Dambrine, Karsten Eppler, Djalil Kateb. Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 389-416. doi: 10.3934/dcdsb.2007.8.389 |
[17] |
Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations and Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331 |
[18] |
Afaf Bouharguane, Pascal Azerad, Frédéric Bouchette, Fabien Marche, Bijan Mohammadi. Low complexity shape optimization & a posteriori high fidelity validation. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 759-772. doi: 10.3934/dcdsb.2010.13.759 |
[19] |
Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks and Heterogeneous Media, 2021, 16 (1) : 1-29. doi: 10.3934/nhm.2020031 |
[20] |
Youness El Yazidi, Abdellatif ELLABIB. A new hybrid method for shape optimization with application to semiconductor equations. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021034 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]