March  2014, 9(1): 161-168. doi: 10.3934/nhm.2014.9.161

Constant in two-dimensional $p$-compliance-network problem

1. 

International Centre for Theoretical Physics, Strada Costiera,11, I - 34151 Trieste

Received  April 2013 Revised  October 2013 Published  April 2014

We consider the problem of the minimization of the $p$-compliance functional where the control variables $\Sigma$ are taking among closed connected one-dimensional sets. We prove some estimate from below of the $p$-compliance functional in terms of the one-dimensional Hausdorff measure of $\Sigma$ and compute the value of a constant $\theta(p)$ appearing usually in $\Gamma$-limit functional of the rescaled $p$-compliance functional.
Citation: Al-hassem Nayam. Constant in two-dimensional $p$-compliance-network problem. Networks & Heterogeneous Media, 2014, 9 (1) : 161-168. doi: 10.3934/nhm.2014.9.161
References:
[1]

D. Bucur and P. Trebeschi, Shape optimization governed by nonlinear state equations, Proc. Roy. Soc. Edinburgh - A, 128 (1998), 945-963. doi: 10.1017/S0308210500030006.  Google Scholar

[2]

G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks, Networks and Heterogeneous Media, 2 (2007), 761-777. doi: 10.3934/nhm.2007.2.761.  Google Scholar

[3]

G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem, ESAIM Control Optimization and Calculus of Variations, 12 (2006), 752-769. doi: 10.1051/cocv:2006020.  Google Scholar

[4]

G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser, Basel, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[5]

S. Mosconi and P. Tilli, $\Gamma$-convergence for the irrigation problem, J. Conv. Anal., 12 (2005), 145-158.  Google Scholar

[6]

P. Tilli, Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length, Networks and Heterogeneous Media, 7 (2012), 127-136. doi: 10.3934/nhm.2012.7.127.  Google Scholar

[7]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate texts in Mathematics, 120, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

show all references

References:
[1]

D. Bucur and P. Trebeschi, Shape optimization governed by nonlinear state equations, Proc. Roy. Soc. Edinburgh - A, 128 (1998), 945-963. doi: 10.1017/S0308210500030006.  Google Scholar

[2]

G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks, Networks and Heterogeneous Media, 2 (2007), 761-777. doi: 10.3934/nhm.2007.2.761.  Google Scholar

[3]

G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem, ESAIM Control Optimization and Calculus of Variations, 12 (2006), 752-769. doi: 10.1051/cocv:2006020.  Google Scholar

[4]

G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser, Basel, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[5]

S. Mosconi and P. Tilli, $\Gamma$-convergence for the irrigation problem, J. Conv. Anal., 12 (2005), 145-158.  Google Scholar

[6]

P. Tilli, Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length, Networks and Heterogeneous Media, 7 (2012), 127-136. doi: 10.3934/nhm.2012.7.127.  Google Scholar

[7]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate texts in Mathematics, 120, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

[1]

Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355

[2]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[3]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[4]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[5]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[6]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[7]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[8]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, 2021, 20 (5) : 2101-2116. doi: 10.3934/cpaa.2021059

[9]

Lorenza D'Elia. $ \Gamma $-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021022

[10]

Markus Muhr, Vanja Nikolić, Barbara Wohlmuth, Linus Wunderlich. Isogeometric shape optimization for nonlinear ultrasound focusing. Evolution Equations & Control Theory, 2019, 8 (1) : 163-202. doi: 10.3934/eect.2019010

[11]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[12]

Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625

[13]

Chunlei Zhang, Qin Sheng, Raúl Ordóñez. Notes on the convergence and applications of surrogate optimization. Conference Publications, 2005, 2005 (Special) : 947-956. doi: 10.3934/proc.2005.2005.947

[14]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[15]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[16]

Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069

[17]

Lekbir Afraites, Marc Dambrine, Karsten Eppler, Djalil Kateb. Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 389-416. doi: 10.3934/dcdsb.2007.8.389

[18]

Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations & Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331

[19]

Afaf Bouharguane, Pascal Azerad, Frédéric Bouchette, Fabien Marche, Bijan Mohammadi. Low complexity shape optimization & a posteriori high fidelity validation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 759-772. doi: 10.3934/dcdsb.2010.13.759

[20]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2021, 16 (1) : 1-29. doi: 10.3934/nhm.2020031

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]