-
Previous Article
A note on the Trace Theorem for domains which are locally subgraph of a Hölder continuous function
- NHM Home
- This Issue
-
Next Article
Constant in two-dimensional $p$-compliance-network problem
Motion of discrete interfaces in low-contrast periodic media
1. | Dipartimento di Matematica 'G. Castelnuovo', 'Sapienza' Università di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy |
References:
[1] |
F. Almgren and J. E. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Diff. Geom., 42 (1995), 1-22. |
[2] |
F. Almgren, J. E. Taylor and L. Wang, Curvature driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387-438.
doi: 10.1137/0331020. |
[3] |
A. Braides, Approximation of Free-Discontinuity Problems, Lecture notes in Mathematics, 1694, Springer-Verlag, Berlin, 1998. |
[4] |
A. Braides, Local Minimization, Variational Evolution and $\Gamma$-Convergence, Lecture Notes in Mathematics, 2094, Springer Verlag, Berlin, 2014.
doi: 10.1007/978-3-319-01982-6. |
[5] |
A. Braides, M. S. Gelli and M. Novaga, Motion and pinning of discrete interfaces, Arch. Ration. Mech. Anal., 195 (2010), 469-498.
doi: 10.1007/s00205-009-0215-z. |
[6] |
A. Braides and G. Scilla, Motion of discrete interfaces in periodic media, Interfaces Free Bound., 15 (2013), 451-476.
doi: 10.4171/IFB/310. |
[7] |
C. Conca, J. San Martín, L. Smaranda and M. Vanninathan, On Burnett coefficients in periodic media in low contrast regime, J. Math. Phys., 49 (2008), 053514, 23 pp.
doi: 10.1063/1.2919066. |
[8] |
G. W. Milton, The Theory of Composites, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511613357. |
[9] |
J. E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points, Differential Geometry, Proceedings of Symposia in Pure Math., 51 (1993), 417-438. |
show all references
References:
[1] |
F. Almgren and J. E. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Diff. Geom., 42 (1995), 1-22. |
[2] |
F. Almgren, J. E. Taylor and L. Wang, Curvature driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387-438.
doi: 10.1137/0331020. |
[3] |
A. Braides, Approximation of Free-Discontinuity Problems, Lecture notes in Mathematics, 1694, Springer-Verlag, Berlin, 1998. |
[4] |
A. Braides, Local Minimization, Variational Evolution and $\Gamma$-Convergence, Lecture Notes in Mathematics, 2094, Springer Verlag, Berlin, 2014.
doi: 10.1007/978-3-319-01982-6. |
[5] |
A. Braides, M. S. Gelli and M. Novaga, Motion and pinning of discrete interfaces, Arch. Ration. Mech. Anal., 195 (2010), 469-498.
doi: 10.1007/s00205-009-0215-z. |
[6] |
A. Braides and G. Scilla, Motion of discrete interfaces in periodic media, Interfaces Free Bound., 15 (2013), 451-476.
doi: 10.4171/IFB/310. |
[7] |
C. Conca, J. San Martín, L. Smaranda and M. Vanninathan, On Burnett coefficients in periodic media in low contrast regime, J. Math. Phys., 49 (2008), 053514, 23 pp.
doi: 10.1063/1.2919066. |
[8] |
G. W. Milton, The Theory of Composites, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511613357. |
[9] |
J. E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points, Differential Geometry, Proceedings of Symposia in Pure Math., 51 (1993), 417-438. |
[1] |
Tetsuya Ishiwata. On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 865-873. doi: 10.3934/dcdss.2011.4.865 |
[2] |
Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4987-5008. doi: 10.3934/dcds.2021065 |
[3] |
Oleksandr Misiats, Nung Kwan Yip. Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6379-6411. doi: 10.3934/dcds.2016076 |
[4] |
Tetsuya Ishiwata. Crystalline motion of spiral-shaped polygonal curves with a tip motion. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 53-62. doi: 10.3934/dcdss.2014.7.53 |
[5] |
Tetsuya Ishiwata. On spiral solutions to generalized crystalline motion with a rotating tip motion. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 881-888. doi: 10.3934/dcdss.2015.8.881 |
[6] |
Y. Goto, K. Ishii, T. Ogawa. Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature. Communications on Pure and Applied Analysis, 2005, 4 (2) : 311-339. doi: 10.3934/cpaa.2005.4.311 |
[7] |
Mi-Ho Giga, Yoshikazu Giga. A subdifferential interpretation of crystalline motion under nonuniform driving force. Conference Publications, 1998, 1998 (Special) : 276-287. doi: 10.3934/proc.1998.1998.276 |
[8] |
Tetsuya Ishiwata. Motion of polygonal curved fronts by crystalline motion: v-shaped solutions and eventual monotonicity. Conference Publications, 2011, 2011 (Special) : 717-726. doi: 10.3934/proc.2011.2011.717 |
[9] |
Antonin Chambolle, Francesco Doveri. Minimizing movements of the Mumford and Shah energy. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 153-174. doi: 10.3934/dcds.1997.3.153 |
[10] |
Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324 |
[11] |
Bendong Lou. Periodic traveling waves of a mean curvature flow in heterogeneous media. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 231-249. doi: 10.3934/dcds.2009.25.231 |
[12] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Evolution of a spiral-shaped polygonal curve by the crystalline curvature flow with a pinned tip. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5261-5295. doi: 10.3934/dcdsb.2019058 |
[13] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[14] |
Tetsuya Ishiwata, Shigetoshi Yazaki. A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2069-2090. doi: 10.3934/dcds.2014.34.2069 |
[15] |
Dingjun Yao, Rongming Wang, Lin Xu. Optimal asset control of a geometric Brownian motion with the transaction costs and bankruptcy permission. Journal of Industrial and Management Optimization, 2015, 11 (2) : 461-478. doi: 10.3934/jimo.2015.11.461 |
[16] |
Francesco Fassò, Andrea Giacobbe, Nicola Sansonetto. On the number of weakly Noetherian constants of motion of nonholonomic systems. Journal of Geometric Mechanics, 2009, 1 (4) : 389-416. doi: 10.3934/jgm.2009.1.389 |
[17] |
Matthias Morzfeld, Daniel T. Kawano, Fai Ma. Characterization of damped linear dynamical systems in free motion. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 49-62. doi: 10.3934/naco.2013.3.49 |
[18] |
Antonio Tribuzio. Perturbations of minimizing movements and curves of maximal slope. Networks and Heterogeneous Media, 2018, 13 (3) : 423-448. doi: 10.3934/nhm.2018019 |
[19] |
Ezio Di Costanzo, Marta Menci, Eleonora Messina, Roberto Natalini, Antonia Vecchio. A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 443-472. doi: 10.3934/dcdsb.2019189 |
[20] |
Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]