- Previous Article
- NHM Home
- This Issue
-
Next Article
Motion of discrete interfaces in low-contrast periodic media
A note on the Trace Theorem for domains which are locally subgraph of a Hölder continuous function
1. | Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb |
References:
[1] |
R. A. Adams, Sobolev Spaces,, Pure and Applied Mathematics, (1975).
|
[2] |
A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, J. Math. Fluid Mech., 7 (2005), 368.
doi: 10.1007/s00021-004-0121-y. |
[3] |
C. H. A. Cheng and S. Shkoller, The interaction of the 3D Navier-Stokes equations with a moving nonlinear Koiter elastic shell,, SIAM J. Math. Anal., 42 (2010), 1094.
doi: 10.1137/080741628. |
[4] |
S. Čanić and B. Muha, A nonlinear moving-boundary problem of parabolic-hyperbolic-hyperbolic type arising in fluid-multi-layered structure interaction problems,, to appear in Proceedings of the Fourteenth International Conference on Hyperbolic Problems: Theory, (). Google Scholar |
[5] |
Z. Ding, A proof of the trace theorem of Sobolev spaces on Lipschitz domains,, Proc. Amer. Math. Soc., 124 (1996), 591.
doi: 10.1090/S0002-9939-96-03132-2. |
[6] |
C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, SIAM J. Math. Anal., 40 (2008), 716.
doi: 10.1137/070699196. |
[7] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monographs and Studies in Mathematics, (1985).
|
[8] |
I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem,, DCDS-A, 32 (2012), 1355.
doi: 10.3934/dcds.2012.32.1355. |
[9] |
D. Lengeler and M. Ružička, Weak solutions for an incompressible newtonian fluid interacting with a linearly elastic koiter shell,, Arch. Ration. Mech. Anal., 211 (2014), 205.
doi: 10.1007/s00205-013-0686-9. |
[10] |
J. Lequeurre, Existence of strong solutions for a system coupling the Navier-Stokes equations and a damped wave equation,, J. Math. Fluid Mech., 15 (2013), 249.
doi: 10.1007/s00021-012-0107-0. |
[11] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I,, Translated from the French by P. Kenneth, (1972).
|
[12] |
B. Muha and S. Čanić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls,, Arch. Ration. Mech. Anal., 207 (2013), 919.
doi: 10.1007/s00205-012-0585-5. |
[13] |
B. Muha and S. Čanić, Existence of a solution to a fluid-multi-layered-structure interaction problem,, J. of Diff. Equations, 256 (2014), 658.
doi: 10.1016/j.jde.2013.09.016. |
show all references
References:
[1] |
R. A. Adams, Sobolev Spaces,, Pure and Applied Mathematics, (1975).
|
[2] |
A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, J. Math. Fluid Mech., 7 (2005), 368.
doi: 10.1007/s00021-004-0121-y. |
[3] |
C. H. A. Cheng and S. Shkoller, The interaction of the 3D Navier-Stokes equations with a moving nonlinear Koiter elastic shell,, SIAM J. Math. Anal., 42 (2010), 1094.
doi: 10.1137/080741628. |
[4] |
S. Čanić and B. Muha, A nonlinear moving-boundary problem of parabolic-hyperbolic-hyperbolic type arising in fluid-multi-layered structure interaction problems,, to appear in Proceedings of the Fourteenth International Conference on Hyperbolic Problems: Theory, (). Google Scholar |
[5] |
Z. Ding, A proof of the trace theorem of Sobolev spaces on Lipschitz domains,, Proc. Amer. Math. Soc., 124 (1996), 591.
doi: 10.1090/S0002-9939-96-03132-2. |
[6] |
C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, SIAM J. Math. Anal., 40 (2008), 716.
doi: 10.1137/070699196. |
[7] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monographs and Studies in Mathematics, (1985).
|
[8] |
I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem,, DCDS-A, 32 (2012), 1355.
doi: 10.3934/dcds.2012.32.1355. |
[9] |
D. Lengeler and M. Ružička, Weak solutions for an incompressible newtonian fluid interacting with a linearly elastic koiter shell,, Arch. Ration. Mech. Anal., 211 (2014), 205.
doi: 10.1007/s00205-013-0686-9. |
[10] |
J. Lequeurre, Existence of strong solutions for a system coupling the Navier-Stokes equations and a damped wave equation,, J. Math. Fluid Mech., 15 (2013), 249.
doi: 10.1007/s00021-012-0107-0. |
[11] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I,, Translated from the French by P. Kenneth, (1972).
|
[12] |
B. Muha and S. Čanić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls,, Arch. Ration. Mech. Anal., 207 (2013), 919.
doi: 10.1007/s00205-012-0585-5. |
[13] |
B. Muha and S. Čanić, Existence of a solution to a fluid-multi-layered-structure interaction problem,, J. of Diff. Equations, 256 (2014), 658.
doi: 10.1016/j.jde.2013.09.016. |
[1] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[2] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[3] |
Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250 |
[4] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[5] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286 |
[6] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[7] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[8] |
Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315 |
[9] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[10] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[11] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[12] |
Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285 |
[13] |
Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282 |
[14] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[15] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
[16] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[17] |
Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283 |
[18] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[19] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[20] |
Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021021 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]