• Previous Article
    Optimization for a special class of traffic flow models: Combinatorial and continuous approaches
  • NHM Home
  • This Issue
  • Next Article
    Dynamics and kinetic limit for a system of noiseless $d$-dimensional Vicsek-type particles
June  2014, 9(2): 299-314. doi: 10.3934/nhm.2014.9.299

Characterization and synthesis of Rayleigh damped elastodynamic networks

1. 

Mathematics Department, University of Utah, 155 S 1400 E RM 233, Salt Lake City, UT 84112-0090, United States

2. 

Department of Mathematics, University of Utah, 155 S 1400 E RM 233, Salt Lake City, UT 84112-0090

Received  May 2013 Revised  March 2014 Published  July 2014

We consider damped elastodynamic networks where the damping matrix is assumed to be a non-negative linear combination of the stiffness and mass matrices (also known as Rayleigh or proportional damping). We give here a characterization of the frequency response of such networks. We also answer the synthesis question for such networks, i.e., how to construct a Rayleigh damped elastodynamic network with a given frequency response. Our analysis shows that not all damped elastodynamic networks can be realized when the proportionality constants between the damping matrix and the mass and stiffness matrices are fixed.
Citation: Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299
References:
[1]

R. Bott and R. J. Duffin, Impedance synthesis without use of transformers,, Journal of Applied Physics, 20 (1949).   Google Scholar

[2]

M. Camar-Eddine and P. Seppecher, Closure of the set of diffusion functionals with respect to the Mosco-convergence,, Math. Models Methods Appl. Sci., 12 (2002), 1153.  doi: 10.1142/S0218202502002069.  Google Scholar

[3]

M. Camar-Eddine and P. Seppecher, Determination of the closure of the set of elasticity functionals,, Arch. Ration. Mech. Anal., 170 (2003), 211.  doi: 10.1007/s00205-003-0272-7.  Google Scholar

[4]

M. T. Chu and S.-F. Xu, Spectral decomposition of real symmetric quadratic $\lambda$-matrices and its applications,, Math. Comp., 78 (2009), 293.  doi: 10.1090/S0025-5718-08-02128-5.  Google Scholar

[5]

T. J. Chung, General Continuum Mechanics,, Cambridge University Press, (2007).   Google Scholar

[6]

E. B. Curtis, D. Ingerman and J. A. Morrow, Circular planar graphs and resistor networks,, Linear Algebra Appl., 283 (1998), 115.  doi: 10.1016/S0024-3795(98)10087-3.  Google Scholar

[7]

R. M. Foster, A reactance theorem,, The Bell System Technical Journal, 3 (1924), 259.  doi: 10.1002/j.1538-7305.1924.tb01358.x.  Google Scholar

[8]

R. M. Foster, Theorems regarding the driving-point impedance of two-mesh circuits,, The Bell System Technical Journal, 3 (1924), 651.  doi: 10.1002/j.1538-7305.1924.tb00944.x.  Google Scholar

[9]

I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials,, Computer Science and Applied Mathematics, (1982).   Google Scholar

[10]

F. Guevara Vasquez, G. W. Milton and D. Onofrei, Complete characterization and synthesis of the response function of elastodynamic networks,, J. Elasticity, 102 (2011), 31.  doi: 10.1007/s10659-010-9260-y.  Google Scholar

[11]

G. W. Milton and P. Seppecher, Realizable response matrices of multi-terminal electrical, acoustic and elastodynamic networks at a given frequency,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), 967.  doi: 10.1098/rspa.2007.0345.  Google Scholar

[12]

G. W. Milton and P. Seppecher, Electromagnetic circuits,, Netw. Heterog. Media, 5 (2010), 335.  doi: 10.3934/nhm.2010.5.335.  Google Scholar

[13]

G. W. Milton and P. Seppecher, Hybrid electromagnetic circuits,, Proceedings of the Eighth International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media, 405 (2010), 2935.   Google Scholar

[14]

F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem,, SIAM Rev., 43 (2001), 235.  doi: 10.1137/S0036144500381988.  Google Scholar

show all references

References:
[1]

R. Bott and R. J. Duffin, Impedance synthesis without use of transformers,, Journal of Applied Physics, 20 (1949).   Google Scholar

[2]

M. Camar-Eddine and P. Seppecher, Closure of the set of diffusion functionals with respect to the Mosco-convergence,, Math. Models Methods Appl. Sci., 12 (2002), 1153.  doi: 10.1142/S0218202502002069.  Google Scholar

[3]

M. Camar-Eddine and P. Seppecher, Determination of the closure of the set of elasticity functionals,, Arch. Ration. Mech. Anal., 170 (2003), 211.  doi: 10.1007/s00205-003-0272-7.  Google Scholar

[4]

M. T. Chu and S.-F. Xu, Spectral decomposition of real symmetric quadratic $\lambda$-matrices and its applications,, Math. Comp., 78 (2009), 293.  doi: 10.1090/S0025-5718-08-02128-5.  Google Scholar

[5]

T. J. Chung, General Continuum Mechanics,, Cambridge University Press, (2007).   Google Scholar

[6]

E. B. Curtis, D. Ingerman and J. A. Morrow, Circular planar graphs and resistor networks,, Linear Algebra Appl., 283 (1998), 115.  doi: 10.1016/S0024-3795(98)10087-3.  Google Scholar

[7]

R. M. Foster, A reactance theorem,, The Bell System Technical Journal, 3 (1924), 259.  doi: 10.1002/j.1538-7305.1924.tb01358.x.  Google Scholar

[8]

R. M. Foster, Theorems regarding the driving-point impedance of two-mesh circuits,, The Bell System Technical Journal, 3 (1924), 651.  doi: 10.1002/j.1538-7305.1924.tb00944.x.  Google Scholar

[9]

I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials,, Computer Science and Applied Mathematics, (1982).   Google Scholar

[10]

F. Guevara Vasquez, G. W. Milton and D. Onofrei, Complete characterization and synthesis of the response function of elastodynamic networks,, J. Elasticity, 102 (2011), 31.  doi: 10.1007/s10659-010-9260-y.  Google Scholar

[11]

G. W. Milton and P. Seppecher, Realizable response matrices of multi-terminal electrical, acoustic and elastodynamic networks at a given frequency,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), 967.  doi: 10.1098/rspa.2007.0345.  Google Scholar

[12]

G. W. Milton and P. Seppecher, Electromagnetic circuits,, Netw. Heterog. Media, 5 (2010), 335.  doi: 10.3934/nhm.2010.5.335.  Google Scholar

[13]

G. W. Milton and P. Seppecher, Hybrid electromagnetic circuits,, Proceedings of the Eighth International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media, 405 (2010), 2935.   Google Scholar

[14]

F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem,, SIAM Rev., 43 (2001), 235.  doi: 10.1137/S0036144500381988.  Google Scholar

[1]

Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110

[2]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[3]

Jean-Paul Chehab, Georges Sadaka. On damping rates of dissipative KdV equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1487-1506. doi: 10.3934/dcdss.2013.6.1487

[4]

Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic & Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023

[5]

János Karsai, John R. Graef. Attractivity properties of oscillator equations with superlinear damping. Conference Publications, 2005, 2005 (Special) : 497-504. doi: 10.3934/proc.2005.2005.497

[6]

Lizhi Ruan, Changjiang Zhu. Boundary layer for nonlinear evolution equations with damping and diffusion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 331-352. doi: 10.3934/dcds.2012.32.331

[7]

Daniela Giachetti, Maria Michaela Porzio. Global existence for nonlinear parabolic equations with a damping term. Communications on Pure & Applied Analysis, 2009, 8 (3) : 923-953. doi: 10.3934/cpaa.2009.8.923

[8]

Giuseppina Autuori, Patrizia Pucci. Kirchhoff systems with nonlinear source and boundary damping terms. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1161-1188. doi: 10.3934/cpaa.2010.9.1161

[9]

Dale McDonald. Sensitivity based trajectory following control damping methods. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 127-143. doi: 10.3934/naco.2013.3.127

[10]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[11]

Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic & Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605

[12]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[13]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations & Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[14]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[15]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[16]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[17]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

[18]

Genni Fragnelli, Dimitri Mugnai. Stability of solutions for nonlinear wave equations with a positive--negative damping. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 615-622. doi: 10.3934/dcdss.2011.4.615

[19]

Tae Gab Ha. On the viscoelastic equation with Balakrishnan-Taylor damping and acoustic boundary conditions. Evolution Equations & Control Theory, 2018, 7 (2) : 281-291. doi: 10.3934/eect.2018014

[20]

Marcello D'Abbicco. Small data solutions for semilinear wave equations with effective damping. Conference Publications, 2013, 2013 (special) : 183-191. doi: 10.3934/proc.2013.2013.183

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]