June  2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353

Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion

1. 

Weierstrass Institute, Mohrenstraße 39, 10117 Berlin, Germany, Germany

2. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin

Received  November 2013 Revised  April 2014 Published  July 2014

We derive a two-scale homogenization limit for reaction-diffusion systems where for some species the diffusion length is of order 1 whereas for the other species the diffusion length is of the order of the periodic microstructure. Thus, in the limit the latter species will display diffusion only on the microscale but not on the macroscale. Because of this missing compactness, the nonlinear coupling through the reaction terms cannot be homogenized but needs to be treated on the two-scale level. In particular, we have to develop new error estimates to derive strong convergence results for passing to the limit.
Citation: Alexander Mielke, Sina Reichelt, Marita Thomas. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks & Heterogeneous Media, 2014, 9 (2) : 353-382. doi: 10.3934/nhm.2014.9.353
References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482. doi: 10.1137/0523084.

[2]

A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,, Studies in Mathematics and its Applications, (1978).

[3]

D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction,, J. Math. Anal. Appl., 286 (2003), 125. doi: 10.1016/S0022-247X(03)00457-8.

[4]

V. Chalupecký, T. Fatima and A. Muntean, Multiscale sulfate attack on sewer pipes: Numerical study of a fast micro-macro mass transfer limit,, Journal of Math-for-Industry, 2B (2010), 171.

[5]

V. Chalupecký and A. Muntean, Semi-discrete finite difference multiscale scheme for a concrete corrosion model: A priori estimates and convergence,, Jpn. J. Ind. Appl. Math., 29 (2012), 289. doi: 10.1007/s13160-012-0060-6.

[6]

D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization,, C. R. Math. Acad. Sci. Paris, 335 (2002), 99. doi: 10.1016/S1631-073X(02)02429-9.

[7]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization,, SIAM J. Math. Anal., 40 (2008), 1585. doi: 10.1137/080713148.

[8]

D. Cioranescu and P. Donato, An Introduction to Homogenization,, Oxford Lecture Series in Mathematics and its Applications, (1999).

[9]

D. Cioranescu, A. Damlamian and R. De Arcangelis, Homogenization of quasiconvex integrals via the periodic unfolding method,, SIAM J. Math. Anal., 37 (2006), 1435. doi: 10.1137/040620898.

[10]

A. Damlamian, An elementary introduction to periodic unfolding,, Math. Sci. Appl., 24 (2005), 119.

[11]

C. Eck, Homogenization of a phase field model for binary mixtures,, Multiscale Model. Simul., 3 (): 1. doi: 10.1137/S1540345903425177.

[12]

J. Elstrodt, Ma$\beta$- und Integrationstheorie,, 3rd edition, (2002).

[13]

E. K. Essel, K. Kuliev, G. Kulieva and L.-E. Persson, Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence,, Appl. Math., 55 (2010), 305. doi: 10.1007/s10492-010-0023-7.

[14]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).

[15]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, Studies in Advanced Mathematics, (1992).

[16]

T. Fatima, A. Muntean and M. Ptashnyk, Unfolding-based corrector estimates for a reaction-diffusion system predicting concrete corrosion,, Appl. Anal., 91 (2012), 1129. doi: 10.1080/00036811.2011.625016.

[17]

B. Fiedler and M. Vishik, Quantitative homogenization of analytic semigroups and reaction-diffusion equations with Diophantine spatial frequencies,, Adv. Differential Equations, 6 (2001), 1377.

[18]

B. Fiedler and M. Vishik, Quantitative homogenization of global attractors for reaction-diffusion systems with rapidly oscillating terms,, Asymptot. Anal., 34 (2003), 159.

[19]

L. Flodén and M. Olsson, Reiterated homogenization of some linear and nonlinear monotone parabolic operators,, Can. Appl. Math. Q., 14 (2006), 149.

[20]

A. Giacomini and A. Musesti, Two-scale homogenization for a model in strain gradient plasticity,, ESAIM Control Optim. Calc. Var., 17 (2011), 1035. doi: 10.1051/cocv/2010036.

[21]

A. Glitzky and R. Hünlich, Global estimates and asymptotics for electro-reaction-diffusion systems in heterostructures,, Appl. Anal., 66 (1997), 205. doi: 10.1080/00036819708840583.

[22]

H. Hanke, Homogenization in gradient plasticity,, Math. Models Meth. Appl. Sci. (M$^3$AS), 21 (2011), 1651. doi: 10.1142/S0218202511005520.

[23]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).

[24]

U. Hornung, W. Jäger and A. Mikelić, Reactive transport through an array of cells with semi-permeable membranes,, RAIRO Modél. Math. Anal. Numér., 28 (1994), 59.

[25]

V. V. Jikov, S. M. Kozlov and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals,, Springer-Verlag, (1994).

[26]

D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence,, Int. J. Pure Appl. Math., 2 (2002), 35.

[27]

H. S. Mahato, Homogenization of a System of Nonlinear Multi-Species Diffusion-Reaction Equations in an $H^{1,p}$ Setting,, Ph.D thesis, (2013).

[28]

V. A. Marchenko and E. Y. Khruslov, Homogenization of Partial Differential Equations,, Birkhäuser Boston Inc., (2006).

[29]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer-Verlag, (1990). doi: 10.1007/978-3-7091-6961-2.

[30]

A. Matache and C. Schwab, Two-scale FEM for homogenization problems,, Math. Model. Numer. Anal. (M2AN), 36 (2002), 537. doi: 10.1051/m2an:2002025.

[31]

S. A. Meier and A. Muntean, A two-scale reaction-diffusion system: Homogenization and fast-reaction limits,, in Current Advances in Nonlinear Analysis and Related Topics, (2010), 443.

[32]

A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems,, Nonlinearity, 24 (2011), 1329. doi: 10.1088/0951-7715/24/4/016.

[33]

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions,, Discr. Cont. Dynam. Systems Ser. S, 6 (2013), 479. doi: 10.3934/dcdss.2013.6.479.

[34]

A. Mielke and E. Rohan, Homogenization of elastic waves in fluid-saturated porous media using the Biot model,, Math. Models Meth. Appl. Sci. (M$^3$AS), 23 (2013), 873. doi: 10.1142/S0218202512500637.

[35]

A. Mielke and A. M. Timofte, Two-scale homogenization for evolutionary variational inequalities via the energetic formulation,, SIAM J. Math. Analysis, 39 (2007), 642. doi: 10.1137/060672790.

[36]

A. Muntean and M. Neuss-Radu, A multiscale Galerkin approach for a class of nonlinear coupled reaction-diffusion systems in complex media,, J. Math. Anal. Appl., 371 (2010), 705. doi: 10.1016/j.jmaa.2010.05.056.

[37]

F. Murat and L. Tartar, $H$-convergence,, in Topics in the mathematical modelling of composite materials, (1997), 21.

[38]

J. D. Murray, Mathematical Biology. I. An Introduction,, 3rd edition, (2002).

[39]

S. Nesenenko, Homogenization in viscoplasticity,, SIAM J. Math. Anal., 39 (2007), 236. doi: 10.1137/060655092.

[40]

M. Neuss-Radu and W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface,, SIAM J. Math. Anal., 39 (2007), 687. doi: 10.1137/060665452.

[41]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal., 20 (1989), 608. doi: 10.1137/0520043.

[42]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1.

[43]

J. Persson, Homogenization of monotone parabolic problems with several temporal scales,, Appl. Math., 57 (2012), 191. doi: 10.1007/s10492-012-0013-z.

[44]

M. A. Peter and M. Böhm, Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium,, Math. Meth. Appl. Sci., 31 (2008), 1257. doi: 10.1002/mma.966.

[45]

M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey,, Milan J. Math., 78 (2010), 417. doi: 10.1007/s00032-010-0133-4.

[46]

S. Reichelt, Multi-scale Analysis of Nonlinear Reaction-Diffusion Systems,, in preparation, (2014).

[47]

B. Schweizer, Homogenization of degenerate two-phase flow equations with oil trapping,, SIAM J. Math. Anal., 39 (2008), 1740. doi: 10.1137/060675472.

[48]

B. Schweizer and M. Veneroni, Periodic homogenization of Prandtl-Reuss plasticity with hardening,, J. Multiscale Model., 2 (2010), 69.

[49]

L. Tartar, The General Theory of Homogenization. A Personalized Introduction,, Lecture Notes of the Unione Matematica Italiana, (2009). doi: 10.1007/978-3-642-05195-1.

[50]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8.

[51]

A. Visintin, Two-scale convergence of some integral functionals,, Calc. Var. Partial Differential Equations, 29 (2007), 239. doi: 10.1007/s00526-006-0068-3.

[52]

A. Visintin, Homogenization of a parabolic model of ferromagnetism,, J. Differential Equations, 250 (2011), 1521. doi: 10.1016/j.jde.2010.09.016.

[53]

A. Visintin, Some properties of two-scale convergence,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 15 (2004), 93.

[54]

A. Visintin, Towards a two-scale calculus,, ESAIM Control Optim. Calc. Var., 12 (2006), 371. doi: 10.1051/cocv:2006012.

[55]

A. Visintin, Homogenization of the nonlinear Maxwell model of viscoelasticity and of the Prandtl-Reuss model of elastoplasticity,, Roy. Soc. Edinb. Proc. A, 138 (2008), 1363. doi: 10.1017/S0308210506000709.

[56]

J. L. Woukeng, Periodic homogenization of nonlinear non-monotone parabolic operators with three time scales,, Ann. Mat. Pura Appl. (4), 189 (2010), 357. doi: 10.1007/s10231-009-0112-y.

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482. doi: 10.1137/0523084.

[2]

A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,, Studies in Mathematics and its Applications, (1978).

[3]

D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction,, J. Math. Anal. Appl., 286 (2003), 125. doi: 10.1016/S0022-247X(03)00457-8.

[4]

V. Chalupecký, T. Fatima and A. Muntean, Multiscale sulfate attack on sewer pipes: Numerical study of a fast micro-macro mass transfer limit,, Journal of Math-for-Industry, 2B (2010), 171.

[5]

V. Chalupecký and A. Muntean, Semi-discrete finite difference multiscale scheme for a concrete corrosion model: A priori estimates and convergence,, Jpn. J. Ind. Appl. Math., 29 (2012), 289. doi: 10.1007/s13160-012-0060-6.

[6]

D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization,, C. R. Math. Acad. Sci. Paris, 335 (2002), 99. doi: 10.1016/S1631-073X(02)02429-9.

[7]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization,, SIAM J. Math. Anal., 40 (2008), 1585. doi: 10.1137/080713148.

[8]

D. Cioranescu and P. Donato, An Introduction to Homogenization,, Oxford Lecture Series in Mathematics and its Applications, (1999).

[9]

D. Cioranescu, A. Damlamian and R. De Arcangelis, Homogenization of quasiconvex integrals via the periodic unfolding method,, SIAM J. Math. Anal., 37 (2006), 1435. doi: 10.1137/040620898.

[10]

A. Damlamian, An elementary introduction to periodic unfolding,, Math. Sci. Appl., 24 (2005), 119.

[11]

C. Eck, Homogenization of a phase field model for binary mixtures,, Multiscale Model. Simul., 3 (): 1. doi: 10.1137/S1540345903425177.

[12]

J. Elstrodt, Ma$\beta$- und Integrationstheorie,, 3rd edition, (2002).

[13]

E. K. Essel, K. Kuliev, G. Kulieva and L.-E. Persson, Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence,, Appl. Math., 55 (2010), 305. doi: 10.1007/s10492-010-0023-7.

[14]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).

[15]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, Studies in Advanced Mathematics, (1992).

[16]

T. Fatima, A. Muntean and M. Ptashnyk, Unfolding-based corrector estimates for a reaction-diffusion system predicting concrete corrosion,, Appl. Anal., 91 (2012), 1129. doi: 10.1080/00036811.2011.625016.

[17]

B. Fiedler and M. Vishik, Quantitative homogenization of analytic semigroups and reaction-diffusion equations with Diophantine spatial frequencies,, Adv. Differential Equations, 6 (2001), 1377.

[18]

B. Fiedler and M. Vishik, Quantitative homogenization of global attractors for reaction-diffusion systems with rapidly oscillating terms,, Asymptot. Anal., 34 (2003), 159.

[19]

L. Flodén and M. Olsson, Reiterated homogenization of some linear and nonlinear monotone parabolic operators,, Can. Appl. Math. Q., 14 (2006), 149.

[20]

A. Giacomini and A. Musesti, Two-scale homogenization for a model in strain gradient plasticity,, ESAIM Control Optim. Calc. Var., 17 (2011), 1035. doi: 10.1051/cocv/2010036.

[21]

A. Glitzky and R. Hünlich, Global estimates and asymptotics for electro-reaction-diffusion systems in heterostructures,, Appl. Anal., 66 (1997), 205. doi: 10.1080/00036819708840583.

[22]

H. Hanke, Homogenization in gradient plasticity,, Math. Models Meth. Appl. Sci. (M$^3$AS), 21 (2011), 1651. doi: 10.1142/S0218202511005520.

[23]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).

[24]

U. Hornung, W. Jäger and A. Mikelić, Reactive transport through an array of cells with semi-permeable membranes,, RAIRO Modél. Math. Anal. Numér., 28 (1994), 59.

[25]

V. V. Jikov, S. M. Kozlov and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals,, Springer-Verlag, (1994).

[26]

D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence,, Int. J. Pure Appl. Math., 2 (2002), 35.

[27]

H. S. Mahato, Homogenization of a System of Nonlinear Multi-Species Diffusion-Reaction Equations in an $H^{1,p}$ Setting,, Ph.D thesis, (2013).

[28]

V. A. Marchenko and E. Y. Khruslov, Homogenization of Partial Differential Equations,, Birkhäuser Boston Inc., (2006).

[29]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer-Verlag, (1990). doi: 10.1007/978-3-7091-6961-2.

[30]

A. Matache and C. Schwab, Two-scale FEM for homogenization problems,, Math. Model. Numer. Anal. (M2AN), 36 (2002), 537. doi: 10.1051/m2an:2002025.

[31]

S. A. Meier and A. Muntean, A two-scale reaction-diffusion system: Homogenization and fast-reaction limits,, in Current Advances in Nonlinear Analysis and Related Topics, (2010), 443.

[32]

A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems,, Nonlinearity, 24 (2011), 1329. doi: 10.1088/0951-7715/24/4/016.

[33]

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions,, Discr. Cont. Dynam. Systems Ser. S, 6 (2013), 479. doi: 10.3934/dcdss.2013.6.479.

[34]

A. Mielke and E. Rohan, Homogenization of elastic waves in fluid-saturated porous media using the Biot model,, Math. Models Meth. Appl. Sci. (M$^3$AS), 23 (2013), 873. doi: 10.1142/S0218202512500637.

[35]

A. Mielke and A. M. Timofte, Two-scale homogenization for evolutionary variational inequalities via the energetic formulation,, SIAM J. Math. Analysis, 39 (2007), 642. doi: 10.1137/060672790.

[36]

A. Muntean and M. Neuss-Radu, A multiscale Galerkin approach for a class of nonlinear coupled reaction-diffusion systems in complex media,, J. Math. Anal. Appl., 371 (2010), 705. doi: 10.1016/j.jmaa.2010.05.056.

[37]

F. Murat and L. Tartar, $H$-convergence,, in Topics in the mathematical modelling of composite materials, (1997), 21.

[38]

J. D. Murray, Mathematical Biology. I. An Introduction,, 3rd edition, (2002).

[39]

S. Nesenenko, Homogenization in viscoplasticity,, SIAM J. Math. Anal., 39 (2007), 236. doi: 10.1137/060655092.

[40]

M. Neuss-Radu and W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface,, SIAM J. Math. Anal., 39 (2007), 687. doi: 10.1137/060665452.

[41]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal., 20 (1989), 608. doi: 10.1137/0520043.

[42]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1.

[43]

J. Persson, Homogenization of monotone parabolic problems with several temporal scales,, Appl. Math., 57 (2012), 191. doi: 10.1007/s10492-012-0013-z.

[44]

M. A. Peter and M. Böhm, Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium,, Math. Meth. Appl. Sci., 31 (2008), 1257. doi: 10.1002/mma.966.

[45]

M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey,, Milan J. Math., 78 (2010), 417. doi: 10.1007/s00032-010-0133-4.

[46]

S. Reichelt, Multi-scale Analysis of Nonlinear Reaction-Diffusion Systems,, in preparation, (2014).

[47]

B. Schweizer, Homogenization of degenerate two-phase flow equations with oil trapping,, SIAM J. Math. Anal., 39 (2008), 1740. doi: 10.1137/060675472.

[48]

B. Schweizer and M. Veneroni, Periodic homogenization of Prandtl-Reuss plasticity with hardening,, J. Multiscale Model., 2 (2010), 69.

[49]

L. Tartar, The General Theory of Homogenization. A Personalized Introduction,, Lecture Notes of the Unione Matematica Italiana, (2009). doi: 10.1007/978-3-642-05195-1.

[50]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8.

[51]

A. Visintin, Two-scale convergence of some integral functionals,, Calc. Var. Partial Differential Equations, 29 (2007), 239. doi: 10.1007/s00526-006-0068-3.

[52]

A. Visintin, Homogenization of a parabolic model of ferromagnetism,, J. Differential Equations, 250 (2011), 1521. doi: 10.1016/j.jde.2010.09.016.

[53]

A. Visintin, Some properties of two-scale convergence,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 15 (2004), 93.

[54]

A. Visintin, Towards a two-scale calculus,, ESAIM Control Optim. Calc. Var., 12 (2006), 371. doi: 10.1051/cocv:2006012.

[55]

A. Visintin, Homogenization of the nonlinear Maxwell model of viscoelasticity and of the Prandtl-Reuss model of elastoplasticity,, Roy. Soc. Edinb. Proc. A, 138 (2008), 1363. doi: 10.1017/S0308210506000709.

[56]

J. L. Woukeng, Periodic homogenization of nonlinear non-monotone parabolic operators with three time scales,, Ann. Mat. Pura Appl. (4), 189 (2010), 357. doi: 10.1007/s10231-009-0112-y.

[1]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[2]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[3]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[4]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[5]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020083

[6]

Peter E. Kloeden, Thomas Lorenz, Meihua Yang. Reaction-diffusion equations with a switched--off reaction zone. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1907-1933. doi: 10.3934/cpaa.2014.13.1907

[7]

Jorge Ferreira, Hermenegildo Borges de Oliveira. Parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2431-2453. doi: 10.3934/dcds.2017105

[8]

Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246

[9]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[10]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[11]

Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure & Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495

[12]

Costică Moroşanu. Stability and errors analysis of two iterative schemes of fractional steps type associated to a nonlinear reaction-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020089

[13]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[14]

Matthias Büger. Planar and screw-shaped solutions for a system of two reaction-diffusion equations on the circle. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 745-756. doi: 10.3934/dcds.2006.16.745

[15]

Yacheng Liu, Runzhang Xu. Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 171-189. doi: 10.3934/dcdsb.2007.7.171

[16]

L.R. Ritter, Akif Ibragimov, Jay R. Walton, Catherine J. McNeal. Stability analysis using an energy estimate approach of a reaction-diffusion model of atherogenesis. Conference Publications, 2009, 2009 (Special) : 630-639. doi: 10.3934/proc.2009.2009.630

[17]

Alessandro Audrito. Bistable reaction equations with doubly nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 2977-3015. doi: 10.3934/dcds.2019124

[18]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[19]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[20]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]