Citation: |
[1] |
D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains, SIAM Journal on Applied Mathematics, 66 (2006), 896-920.doi: 10.1137/040604625. |
[2] |
H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Application to PDE and Optimization, SIAM, Philadelphia, 2006. |
[3] |
G. Bretti, C. D'Apice, R. Manzo and B. Piccoli, A continuum-discrete model for supply chains dynamics, Networks and Heterogeneous Media, 2 (2007), 661-694.doi: 10.3934/nhm.2007.2.661. |
[4] |
G. A. Chechkin and A. Yu. Goritsky, S.N. Kruzhkov's Lectures on First-Order Quasilinear PDEs, in Analytical and Numerical Aspects of PDEs, Walter de Gruyter, 2009. |
[5] |
C. F. Daganzo, A Theory of Supply Chains, Springer-Verlag, New York, Berlin, Heidelberg, 2003.doi: 10.1007/978-3-642-18152-8. |
[6] |
C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains: A Continuous Approach, SIAM, Philadelphia, 2010.doi: 10.1137/1.9780898717600. |
[7] |
C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for one class of fluid dynamic models, JFar East J. Appl. Math., 46 (2010), 85-119. |
[8] |
C. D'Apice and R. Manzo, A fluid-dynamic model for supply chain, Networks and Heterogeneous Media, 1 (2006), 379-398.doi: 10.3934/nhm.2006.1.379. |
[9] |
C. D'Apice, R. Manzo and B. Piccoli, Modelling supply networks with partial differential equations, Quarterly of Applied Mathematics, 67 (2009), 419-440. |
[10] |
C. D'Apice, R. Manzo and B. Piccoli, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks, Journal of Mathematical Analysis and Applications, 362 (2010), 374-386.doi: 10.1016/j.jmaa.2009.07.058. |
[11] |
C. D'Apice, R. Manzo and B. Piccoli, Optimal input flow for a PDE-ODE model of supply chains, Commun. Math. Sci., 10 (2012), 1225-1240.doi: 10.4310/CMS.2012.v10.n4.a10. |
[12] |
C. D'Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply-chain, SIAM Journal on Numerical Analysis, 51 (2013), 2634-2650.doi: 10.1137/120889721. |
[13] |
F. Dubois and P. L. Lefloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, Journal of Differential Equations, 71 (1988), 93-122.doi: 10.1016/0022-0396(88)90040-X. |
[14] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984.doi: 10.1007/978-1-4684-9486-0. |
[15] |
S. Göttlich, M. Herty and A. Klar, Network models for supply chains, Comm. Math. Sci., 3 (2005), 545-559.doi: 10.4310/CMS.2005.v3.n4.a5. |
[16] |
S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks, Comm. Math. Sci., 4 (2006), 315-330.doi: 10.4310/CMS.2006.v4.n2.a3. |
[17] |
K. Han, T. L. Friesz and T. Yao, A variational approach for continuous supply chain networks, SIAM J. Control Optim., 52 (2014), 663-686.doi: 10.1137/120868943. |
[18] |
D. Helbing, S. Lämmer, T. Seidel, P. Seba and T. Platkowsk, Physics, stability and dynamics of supply networks, Phys. Rev., E, 70 (2004), 66-116.doi: 10.1103/PhysRevE.70.066116. |
[19] |
M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations, SIAM J. Math. Anal., 39 (2007), 160-173.doi: 10.1137/060659478. |
[20] |
C. Kirchner, M. Herty, S. Göttlich and A. Klar, Optimal Control for Continuous Supply Network Models, Netw. Heterog. Media, 1 (2006), 675-688.doi: 10.3934/nhm.2006.1.675. |
[21] |
P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis, Birkhäuser Verlag, Boston, 2011.doi: 10.1007/978-0-8176-8149-4. |
[22] |
P. I. Kogut and R. Manzo, On Vector-valued approximation of state constrained optimal control problems for nonlinear hyperbolic conservation laws, Journal of Dynamical and Control Systems, 19 (2013), 381-404.doi: 10.1007/s10883-013-9184-5. |
[23] |
M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems, IEEE Trans. Automatic Control, 55 (2010), 2511-2526.doi: 10.1109/TAC.2010.2046925. |
[24] |
P. D. Lax, Hyperbolic System of Conservation Laws and the Mathematical Theory of Shock Waves, Society of Industrial and Applied Mathematics, Philadelfia, Pa., 1973. |
[25] |
M. Miranda, Comportamento delle successioni convergenti di frontiere minimali, Rend. Sem. Mat. Univ. Padova, 38 (1967), 238-257. |
[26] |
R. Schiel, Vector Optimization ans Control with PDEs and Pointwise State Constraints, PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2014. |
[27] |
D. M. Zhuang, Density result for proper efficiencies, SIAM J. on Control and Optimiz., 32 (1994), 51-58.doi: 10.1137/S0363012989171518. |