September  2014, 9(3): 501-518. doi: 10.3934/nhm.2014.9.501

On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains

1. 

Department of Information Engineering, Electrical Engineering and Applied Mathematics, University of Salerno, Via Giovanni Paolo II, 132, Fisciano (SA), Italy

2. 

Department of Differential Equations, Dnipropetrovsk National University, Gagarin av., 72, 49010 Dnipropetrovsk, Ukraine

3. 

Dept. of Information Eng., Electrical Eng. and Applied Mathematics, University of Salerno, Via Giovanni Paolo II, 132, I 84084 Fisciano (SA), Italy

Received  April 2014 Revised  July 2014 Published  October 2014

We discuss the optimal control problem (OCP) stated as the minimization of the queues and the difference between the effective outflow and a desired one for the continuous model of supply chains, consisting of a PDE for the density of processed parts and an ODE for the queue buffer occupancy. The main goal is to consider this problem with pointwise control and state constraints. Using the so-called Henig delation, we propose the relaxation approach to characterize the solvability and regularity of the original problem by analyzing the corresponding relaxed OCP.
Citation: Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks & Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501
References:
[1]

D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM Journal on Applied Mathematics, 66 (2006), 896. doi: 10.1137/040604625. Google Scholar

[2]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Application to PDE and Optimization,, SIAM, (2006). Google Scholar

[3]

G. Bretti, C. D'Apice, R. Manzo and B. Piccoli, A continuum-discrete model for supply chains dynamics,, Networks and Heterogeneous Media, 2 (2007), 661. doi: 10.3934/nhm.2007.2.661. Google Scholar

[4]

G. A. Chechkin and A. Yu. Goritsky, S.N. Kruzhkov's Lectures on First-Order Quasilinear PDEs,, in Analytical and Numerical Aspects of PDEs, (2009). Google Scholar

[5]

C. F. Daganzo, A Theory of Supply Chains,, Springer-Verlag, (2003). doi: 10.1007/978-3-642-18152-8. Google Scholar

[6]

C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains: A Continuous Approach,, SIAM, (2010). doi: 10.1137/1.9780898717600. Google Scholar

[7]

C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for one class of fluid dynamic models,, JFar East J. Appl. Math., 46 (2010), 85. Google Scholar

[8]

C. D'Apice and R. Manzo, A fluid-dynamic model for supply chain,, Networks and Heterogeneous Media, 1 (2006), 379. doi: 10.3934/nhm.2006.1.379. Google Scholar

[9]

C. D'Apice, R. Manzo and B. Piccoli, Modelling supply networks with partial differential equations,, Quarterly of Applied Mathematics, 67 (2009), 419. Google Scholar

[10]

C. D'Apice, R. Manzo and B. Piccoli, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks,, Journal of Mathematical Analysis and Applications, 362 (2010), 374. doi: 10.1016/j.jmaa.2009.07.058. Google Scholar

[11]

C. D'Apice, R. Manzo and B. Piccoli, Optimal input flow for a PDE-ODE model of supply chains,, Commun. Math. Sci., 10 (2012), 1225. doi: 10.4310/CMS.2012.v10.n4.a10. Google Scholar

[12]

C. D'Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply-chain,, SIAM Journal on Numerical Analysis, 51 (2013), 2634. doi: 10.1137/120889721. Google Scholar

[13]

F. Dubois and P. L. Lefloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws,, Journal of Differential Equations, 71 (1988), 93. doi: 10.1016/0022-0396(88)90040-X. Google Scholar

[14]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Birkhäuser, (1984). doi: 10.1007/978-1-4684-9486-0. Google Scholar

[15]

S. Göttlich, M. Herty and A. Klar, Network models for supply chains,, Comm. Math. Sci., 3 (2005), 545. doi: 10.4310/CMS.2005.v3.n4.a5. Google Scholar

[16]

S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks,, Comm. Math. Sci., 4 (2006), 315. doi: 10.4310/CMS.2006.v4.n2.a3. Google Scholar

[17]

K. Han, T. L. Friesz and T. Yao, A variational approach for continuous supply chain networks,, SIAM J. Control Optim., 52 (2014), 663. doi: 10.1137/120868943. Google Scholar

[18]

D. Helbing, S. Lämmer, T. Seidel, P. Seba and T. Platkowsk, Physics, stability and dynamics of supply networks,, Phys. Rev., 70 (2004), 66. doi: 10.1103/PhysRevE.70.066116. Google Scholar

[19]

M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations,, SIAM J. Math. Anal., 39 (2007), 160. doi: 10.1137/060659478. Google Scholar

[20]

C. Kirchner, M. Herty, S. Göttlich and A. Klar, Optimal Control for Continuous Supply Network Models,, Netw. Heterog. Media, 1 (2006), 675. doi: 10.3934/nhm.2006.1.675. Google Scholar

[21]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis,, Birkhäuser Verlag, (2011). doi: 10.1007/978-0-8176-8149-4. Google Scholar

[22]

P. I. Kogut and R. Manzo, On Vector-valued approximation of state constrained optimal control problems for nonlinear hyperbolic conservation laws,, Journal of Dynamical and Control Systems, 19 (2013), 381. doi: 10.1007/s10883-013-9184-5. Google Scholar

[23]

M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems,, IEEE Trans. Automatic Control, 55 (2010), 2511. doi: 10.1109/TAC.2010.2046925. Google Scholar

[24]

P. D. Lax, Hyperbolic System of Conservation Laws and the Mathematical Theory of Shock Waves,, Society of Industrial and Applied Mathematics, (1973). Google Scholar

[25]

M. Miranda, Comportamento delle successioni convergenti di frontiere minimali,, Rend. Sem. Mat. Univ. Padova, 38 (1967), 238. Google Scholar

[26]

R. Schiel, Vector Optimization ans Control with PDEs and Pointwise State Constraints,, PhD thesis, (2014). Google Scholar

[27]

D. M. Zhuang, Density result for proper efficiencies,, SIAM J. on Control and Optimiz., 32 (1994), 51. doi: 10.1137/S0363012989171518. Google Scholar

show all references

References:
[1]

D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM Journal on Applied Mathematics, 66 (2006), 896. doi: 10.1137/040604625. Google Scholar

[2]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Application to PDE and Optimization,, SIAM, (2006). Google Scholar

[3]

G. Bretti, C. D'Apice, R. Manzo and B. Piccoli, A continuum-discrete model for supply chains dynamics,, Networks and Heterogeneous Media, 2 (2007), 661. doi: 10.3934/nhm.2007.2.661. Google Scholar

[4]

G. A. Chechkin and A. Yu. Goritsky, S.N. Kruzhkov's Lectures on First-Order Quasilinear PDEs,, in Analytical and Numerical Aspects of PDEs, (2009). Google Scholar

[5]

C. F. Daganzo, A Theory of Supply Chains,, Springer-Verlag, (2003). doi: 10.1007/978-3-642-18152-8. Google Scholar

[6]

C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains: A Continuous Approach,, SIAM, (2010). doi: 10.1137/1.9780898717600. Google Scholar

[7]

C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for one class of fluid dynamic models,, JFar East J. Appl. Math., 46 (2010), 85. Google Scholar

[8]

C. D'Apice and R. Manzo, A fluid-dynamic model for supply chain,, Networks and Heterogeneous Media, 1 (2006), 379. doi: 10.3934/nhm.2006.1.379. Google Scholar

[9]

C. D'Apice, R. Manzo and B. Piccoli, Modelling supply networks with partial differential equations,, Quarterly of Applied Mathematics, 67 (2009), 419. Google Scholar

[10]

C. D'Apice, R. Manzo and B. Piccoli, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks,, Journal of Mathematical Analysis and Applications, 362 (2010), 374. doi: 10.1016/j.jmaa.2009.07.058. Google Scholar

[11]

C. D'Apice, R. Manzo and B. Piccoli, Optimal input flow for a PDE-ODE model of supply chains,, Commun. Math. Sci., 10 (2012), 1225. doi: 10.4310/CMS.2012.v10.n4.a10. Google Scholar

[12]

C. D'Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply-chain,, SIAM Journal on Numerical Analysis, 51 (2013), 2634. doi: 10.1137/120889721. Google Scholar

[13]

F. Dubois and P. L. Lefloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws,, Journal of Differential Equations, 71 (1988), 93. doi: 10.1016/0022-0396(88)90040-X. Google Scholar

[14]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Birkhäuser, (1984). doi: 10.1007/978-1-4684-9486-0. Google Scholar

[15]

S. Göttlich, M. Herty and A. Klar, Network models for supply chains,, Comm. Math. Sci., 3 (2005), 545. doi: 10.4310/CMS.2005.v3.n4.a5. Google Scholar

[16]

S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks,, Comm. Math. Sci., 4 (2006), 315. doi: 10.4310/CMS.2006.v4.n2.a3. Google Scholar

[17]

K. Han, T. L. Friesz and T. Yao, A variational approach for continuous supply chain networks,, SIAM J. Control Optim., 52 (2014), 663. doi: 10.1137/120868943. Google Scholar

[18]

D. Helbing, S. Lämmer, T. Seidel, P. Seba and T. Platkowsk, Physics, stability and dynamics of supply networks,, Phys. Rev., 70 (2004), 66. doi: 10.1103/PhysRevE.70.066116. Google Scholar

[19]

M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations,, SIAM J. Math. Anal., 39 (2007), 160. doi: 10.1137/060659478. Google Scholar

[20]

C. Kirchner, M. Herty, S. Göttlich and A. Klar, Optimal Control for Continuous Supply Network Models,, Netw. Heterog. Media, 1 (2006), 675. doi: 10.3934/nhm.2006.1.675. Google Scholar

[21]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis,, Birkhäuser Verlag, (2011). doi: 10.1007/978-0-8176-8149-4. Google Scholar

[22]

P. I. Kogut and R. Manzo, On Vector-valued approximation of state constrained optimal control problems for nonlinear hyperbolic conservation laws,, Journal of Dynamical and Control Systems, 19 (2013), 381. doi: 10.1007/s10883-013-9184-5. Google Scholar

[23]

M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems,, IEEE Trans. Automatic Control, 55 (2010), 2511. doi: 10.1109/TAC.2010.2046925. Google Scholar

[24]

P. D. Lax, Hyperbolic System of Conservation Laws and the Mathematical Theory of Shock Waves,, Society of Industrial and Applied Mathematics, (1973). Google Scholar

[25]

M. Miranda, Comportamento delle successioni convergenti di frontiere minimali,, Rend. Sem. Mat. Univ. Padova, 38 (1967), 238. Google Scholar

[26]

R. Schiel, Vector Optimization ans Control with PDEs and Pointwise State Constraints,, PhD thesis, (2014). Google Scholar

[27]

D. M. Zhuang, Density result for proper efficiencies,, SIAM J. on Control and Optimiz., 32 (1994), 51. doi: 10.1137/S0363012989171518. Google Scholar

[1]

Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107

[2]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[3]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[4]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[5]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial & Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

[6]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[7]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[8]

Yanning Li, Edward Canepa, Christian Claudel. Efficient robust control of first order scalar conservation laws using semi-analytical solutions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 525-542. doi: 10.3934/dcdss.2014.7.525

[9]

Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579

[10]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[11]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[12]

C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477

[13]

Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar. Optimal control for continuous supply network models. Networks & Heterogeneous Media, 2006, 1 (4) : 675-688. doi: 10.3934/nhm.2006.1.675

[14]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[15]

Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure & Applied Analysis, 2013, 12 (2) : 973-984. doi: 10.3934/cpaa.2013.12.973

[16]

Lijuan Wang, Weike Wang. Pointwise estimates of solutions to conservation laws with nonlocal dissipation-type terms. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2835-2854. doi: 10.3934/cpaa.2019127

[17]

Constantine M. Dafermos. Hyperbolic balance laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4271-4285. doi: 10.3934/dcds.2016.36.4271

[18]

Jason Chao-Hsien Pan, Ku-Kuang Chang, Yu-Cheng Hsiao. Optimal inventory policies for serial-type and assembly-type supply chains with equal sized batch. Journal of Industrial & Management Optimization, 2015, 11 (3) : 1021-1040. doi: 10.3934/jimo.2015.11.1021

[19]

Ciro D'Apice, Rosanna Manzo. A fluid dynamic model for supply chains. Networks & Heterogeneous Media, 2006, 1 (3) : 379-398. doi: 10.3934/nhm.2006.1.379

[20]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]