September  2014, 9(3): 501-518. doi: 10.3934/nhm.2014.9.501

On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains

1. 

Department of Information Engineering, Electrical Engineering and Applied Mathematics, University of Salerno, Via Giovanni Paolo II, 132, Fisciano (SA), Italy

2. 

Department of Differential Equations, Dnipropetrovsk National University, Gagarin av., 72, 49010 Dnipropetrovsk, Ukraine

3. 

Dept. of Information Eng., Electrical Eng. and Applied Mathematics, University of Salerno, Via Giovanni Paolo II, 132, I 84084 Fisciano (SA), Italy

Received  April 2014 Revised  July 2014 Published  October 2014

We discuss the optimal control problem (OCP) stated as the minimization of the queues and the difference between the effective outflow and a desired one for the continuous model of supply chains, consisting of a PDE for the density of processed parts and an ODE for the queue buffer occupancy. The main goal is to consider this problem with pointwise control and state constraints. Using the so-called Henig delation, we propose the relaxation approach to characterize the solvability and regularity of the original problem by analyzing the corresponding relaxed OCP.
Citation: Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks & Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501
References:
[1]

D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM Journal on Applied Mathematics, 66 (2006), 896.  doi: 10.1137/040604625.  Google Scholar

[2]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Application to PDE and Optimization,, SIAM, (2006).   Google Scholar

[3]

G. Bretti, C. D'Apice, R. Manzo and B. Piccoli, A continuum-discrete model for supply chains dynamics,, Networks and Heterogeneous Media, 2 (2007), 661.  doi: 10.3934/nhm.2007.2.661.  Google Scholar

[4]

G. A. Chechkin and A. Yu. Goritsky, S.N. Kruzhkov's Lectures on First-Order Quasilinear PDEs,, in Analytical and Numerical Aspects of PDEs, (2009).   Google Scholar

[5]

C. F. Daganzo, A Theory of Supply Chains,, Springer-Verlag, (2003).  doi: 10.1007/978-3-642-18152-8.  Google Scholar

[6]

C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains: A Continuous Approach,, SIAM, (2010).  doi: 10.1137/1.9780898717600.  Google Scholar

[7]

C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for one class of fluid dynamic models,, JFar East J. Appl. Math., 46 (2010), 85.   Google Scholar

[8]

C. D'Apice and R. Manzo, A fluid-dynamic model for supply chain,, Networks and Heterogeneous Media, 1 (2006), 379.  doi: 10.3934/nhm.2006.1.379.  Google Scholar

[9]

C. D'Apice, R. Manzo and B. Piccoli, Modelling supply networks with partial differential equations,, Quarterly of Applied Mathematics, 67 (2009), 419.   Google Scholar

[10]

C. D'Apice, R. Manzo and B. Piccoli, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks,, Journal of Mathematical Analysis and Applications, 362 (2010), 374.  doi: 10.1016/j.jmaa.2009.07.058.  Google Scholar

[11]

C. D'Apice, R. Manzo and B. Piccoli, Optimal input flow for a PDE-ODE model of supply chains,, Commun. Math. Sci., 10 (2012), 1225.  doi: 10.4310/CMS.2012.v10.n4.a10.  Google Scholar

[12]

C. D'Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply-chain,, SIAM Journal on Numerical Analysis, 51 (2013), 2634.  doi: 10.1137/120889721.  Google Scholar

[13]

F. Dubois and P. L. Lefloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws,, Journal of Differential Equations, 71 (1988), 93.  doi: 10.1016/0022-0396(88)90040-X.  Google Scholar

[14]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Birkhäuser, (1984).  doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[15]

S. Göttlich, M. Herty and A. Klar, Network models for supply chains,, Comm. Math. Sci., 3 (2005), 545.  doi: 10.4310/CMS.2005.v3.n4.a5.  Google Scholar

[16]

S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks,, Comm. Math. Sci., 4 (2006), 315.  doi: 10.4310/CMS.2006.v4.n2.a3.  Google Scholar

[17]

K. Han, T. L. Friesz and T. Yao, A variational approach for continuous supply chain networks,, SIAM J. Control Optim., 52 (2014), 663.  doi: 10.1137/120868943.  Google Scholar

[18]

D. Helbing, S. Lämmer, T. Seidel, P. Seba and T. Platkowsk, Physics, stability and dynamics of supply networks,, Phys. Rev., 70 (2004), 66.  doi: 10.1103/PhysRevE.70.066116.  Google Scholar

[19]

M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations,, SIAM J. Math. Anal., 39 (2007), 160.  doi: 10.1137/060659478.  Google Scholar

[20]

C. Kirchner, M. Herty, S. Göttlich and A. Klar, Optimal Control for Continuous Supply Network Models,, Netw. Heterog. Media, 1 (2006), 675.  doi: 10.3934/nhm.2006.1.675.  Google Scholar

[21]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis,, Birkhäuser Verlag, (2011).  doi: 10.1007/978-0-8176-8149-4.  Google Scholar

[22]

P. I. Kogut and R. Manzo, On Vector-valued approximation of state constrained optimal control problems for nonlinear hyperbolic conservation laws,, Journal of Dynamical and Control Systems, 19 (2013), 381.  doi: 10.1007/s10883-013-9184-5.  Google Scholar

[23]

M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems,, IEEE Trans. Automatic Control, 55 (2010), 2511.  doi: 10.1109/TAC.2010.2046925.  Google Scholar

[24]

P. D. Lax, Hyperbolic System of Conservation Laws and the Mathematical Theory of Shock Waves,, Society of Industrial and Applied Mathematics, (1973).   Google Scholar

[25]

M. Miranda, Comportamento delle successioni convergenti di frontiere minimali,, Rend. Sem. Mat. Univ. Padova, 38 (1967), 238.   Google Scholar

[26]

R. Schiel, Vector Optimization ans Control with PDEs and Pointwise State Constraints,, PhD thesis, (2014).   Google Scholar

[27]

D. M. Zhuang, Density result for proper efficiencies,, SIAM J. on Control and Optimiz., 32 (1994), 51.  doi: 10.1137/S0363012989171518.  Google Scholar

show all references

References:
[1]

D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM Journal on Applied Mathematics, 66 (2006), 896.  doi: 10.1137/040604625.  Google Scholar

[2]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Application to PDE and Optimization,, SIAM, (2006).   Google Scholar

[3]

G. Bretti, C. D'Apice, R. Manzo and B. Piccoli, A continuum-discrete model for supply chains dynamics,, Networks and Heterogeneous Media, 2 (2007), 661.  doi: 10.3934/nhm.2007.2.661.  Google Scholar

[4]

G. A. Chechkin and A. Yu. Goritsky, S.N. Kruzhkov's Lectures on First-Order Quasilinear PDEs,, in Analytical and Numerical Aspects of PDEs, (2009).   Google Scholar

[5]

C. F. Daganzo, A Theory of Supply Chains,, Springer-Verlag, (2003).  doi: 10.1007/978-3-642-18152-8.  Google Scholar

[6]

C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains: A Continuous Approach,, SIAM, (2010).  doi: 10.1137/1.9780898717600.  Google Scholar

[7]

C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for one class of fluid dynamic models,, JFar East J. Appl. Math., 46 (2010), 85.   Google Scholar

[8]

C. D'Apice and R. Manzo, A fluid-dynamic model for supply chain,, Networks and Heterogeneous Media, 1 (2006), 379.  doi: 10.3934/nhm.2006.1.379.  Google Scholar

[9]

C. D'Apice, R. Manzo and B. Piccoli, Modelling supply networks with partial differential equations,, Quarterly of Applied Mathematics, 67 (2009), 419.   Google Scholar

[10]

C. D'Apice, R. Manzo and B. Piccoli, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks,, Journal of Mathematical Analysis and Applications, 362 (2010), 374.  doi: 10.1016/j.jmaa.2009.07.058.  Google Scholar

[11]

C. D'Apice, R. Manzo and B. Piccoli, Optimal input flow for a PDE-ODE model of supply chains,, Commun. Math. Sci., 10 (2012), 1225.  doi: 10.4310/CMS.2012.v10.n4.a10.  Google Scholar

[12]

C. D'Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply-chain,, SIAM Journal on Numerical Analysis, 51 (2013), 2634.  doi: 10.1137/120889721.  Google Scholar

[13]

F. Dubois and P. L. Lefloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws,, Journal of Differential Equations, 71 (1988), 93.  doi: 10.1016/0022-0396(88)90040-X.  Google Scholar

[14]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Birkhäuser, (1984).  doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[15]

S. Göttlich, M. Herty and A. Klar, Network models for supply chains,, Comm. Math. Sci., 3 (2005), 545.  doi: 10.4310/CMS.2005.v3.n4.a5.  Google Scholar

[16]

S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks,, Comm. Math. Sci., 4 (2006), 315.  doi: 10.4310/CMS.2006.v4.n2.a3.  Google Scholar

[17]

K. Han, T. L. Friesz and T. Yao, A variational approach for continuous supply chain networks,, SIAM J. Control Optim., 52 (2014), 663.  doi: 10.1137/120868943.  Google Scholar

[18]

D. Helbing, S. Lämmer, T. Seidel, P. Seba and T. Platkowsk, Physics, stability and dynamics of supply networks,, Phys. Rev., 70 (2004), 66.  doi: 10.1103/PhysRevE.70.066116.  Google Scholar

[19]

M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations,, SIAM J. Math. Anal., 39 (2007), 160.  doi: 10.1137/060659478.  Google Scholar

[20]

C. Kirchner, M. Herty, S. Göttlich and A. Klar, Optimal Control for Continuous Supply Network Models,, Netw. Heterog. Media, 1 (2006), 675.  doi: 10.3934/nhm.2006.1.675.  Google Scholar

[21]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis,, Birkhäuser Verlag, (2011).  doi: 10.1007/978-0-8176-8149-4.  Google Scholar

[22]

P. I. Kogut and R. Manzo, On Vector-valued approximation of state constrained optimal control problems for nonlinear hyperbolic conservation laws,, Journal of Dynamical and Control Systems, 19 (2013), 381.  doi: 10.1007/s10883-013-9184-5.  Google Scholar

[23]

M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems,, IEEE Trans. Automatic Control, 55 (2010), 2511.  doi: 10.1109/TAC.2010.2046925.  Google Scholar

[24]

P. D. Lax, Hyperbolic System of Conservation Laws and the Mathematical Theory of Shock Waves,, Society of Industrial and Applied Mathematics, (1973).   Google Scholar

[25]

M. Miranda, Comportamento delle successioni convergenti di frontiere minimali,, Rend. Sem. Mat. Univ. Padova, 38 (1967), 238.   Google Scholar

[26]

R. Schiel, Vector Optimization ans Control with PDEs and Pointwise State Constraints,, PhD thesis, (2014).   Google Scholar

[27]

D. M. Zhuang, Density result for proper efficiencies,, SIAM J. on Control and Optimiz., 32 (1994), 51.  doi: 10.1137/S0363012989171518.  Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[3]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[4]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[8]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[9]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[10]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[11]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[12]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[15]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[16]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]