• Previous Article
    Group pinning consensus under fixed and randomly switching topologies with acyclic partition
  • NHM Home
  • This Issue
  • Next Article
    On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains
September  2014, 9(3): 519-552. doi: 10.3934/nhm.2014.9.519

An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study

1. 

Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Via dei Taurini, 19 – 00185 Rome

Received  May 2014 Revised  August 2014 Published  October 2014

In this paper we study a model for traffic flow on networks based on a hyperbolic system of conservation laws with discontinuous flux. Each equation describes the density evolution of vehicles having a common path along the network. In this formulation the junctions disappear since each path is considered as a single uninterrupted road.
    We consider a Godunov-based approximation scheme for the system which is very easy to implement. Besides basic properties like the conservation of cars and positive bounded solutions, the scheme exhibits other nice properties, being able to select automatically a solution at network's nodes without requiring external procedures (e.g., maximization of the flux via a linear programming method). Moreover, the scheme can be interpreted as a discretization of the traffic models with buffer, although no buffer is introduced here.
    Finally, we show how the scheme can be recast in the framework of the classical theory of traffic flow on networks, where a conservation law has to be solved on each arc of the network. This is achieved by solving the Riemann problem for a modified equation, and showing that its solution corresponds to the one computed by the numerical scheme.
Citation: Maya Briani, Emiliano Cristiani. An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks & Heterogeneous Media, 2014, 9 (3) : 519-552. doi: 10.3934/nhm.2014.9.519
References:
[1]

B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux,, Arch. Rational Mech. Anal., 201 (2011), 27. doi: 10.1007/s00205-010-0389-4. Google Scholar

[2]

S. Benzoni-Gavage and R. M. Colombo, An $n$-populations model for traffic flow,, European J. Appl. Math., 14 (2003), 587. doi: 10.1017/S0956792503005266. Google Scholar

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,, Oxford Lecture Series in Mathematics, (2000). Google Scholar

[4]

A. Bressan and K. T. Nguyen, Conservation law models for traffic flow on a network of roads,, Preprint, (2014). Google Scholar

[5]

G. Bretti, M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 379. doi: 10.3934/dcdss.2014.7.379. Google Scholar

[6]

R. Bürger and K. H. Karlsen, Conservation laws with discontinuous flux: A short introduction,, J. Eng. Math., 60 (2008), 241. doi: 10.1007/s10665-008-9213-7. Google Scholar

[7]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862. doi: 10.1137/S0036141004402683. Google Scholar

[8]

E. Cristiani, C. de Fabritiis and B. Piccoli, A fluid dynamic approach for traffic forecast from mobile sensor data,, Commun. Appl. Ind. Math., 1 (2010), 54. doi: 10.1685/2010CAIM487. Google Scholar

[9]

C. F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory,, Transportation Research Part B, 28 (1994), 269. doi: 10.1016/0191-2615(94)90002-7. Google Scholar

[10]

C. F. Daganzo, The cell transmission model, part II: Network traffic,, Transportation Research Part B, 29 (1995), 79. doi: 10.1016/0191-2615(94)00022-R. Google Scholar

[11]

M. Garavello and P. Goatin, The Cauchy problem at a node with buffer,, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1915. doi: 10.3934/dcds.2012.32.1915. Google Scholar

[12]

M. Garavello and B. Piccoli, Source-destination flow on a road network,, Comm. Math. Sci., 3 (2005), 261. doi: 10.4310/CMS.2005.v3.n3.a1. Google Scholar

[13]

M. Garavello and B. Piccoli, Traffic Flow on Networks,, AIMS Series on Applied Mathematics, (2006). Google Scholar

[14]

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks,, Advances in Dynamic Network Modeling in Complex Transportation Systems, 2 (2013), 143. doi: 10.1007/978-1-4614-6243-9_6. Google Scholar

[15]

R. Haberman, Mathematical Models: Mechanical Vibrations, Population Dynamics and Traffic Flow,, Prentice-Hall, (1977). Google Scholar

[16]

J. C. Herrera and A. M. Bayen, Incorporation of Lagrangian measurements in freeway traffic state estimation,, Transportation Research Part B, 44 (2010), 460. doi: 10.1016/j.trb.2009.10.005. Google Scholar

[17]

M. Herty, C. Kirchner, S. Moutari and M. Rascle, Multicommodity flows on road networks,, Commun. Math. Sci., 6 (2008), 171. doi: 10.4310/CMS.2008.v6.n1.a8. Google Scholar

[18]

M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow,, Netw. Heterog. Media, 4 (2009), 813. doi: 10.3934/nhm.2009.4.813. Google Scholar

[19]

M. Herty, M. Seaïd and A. K. Singh, A domain decomposition method for conservation laws with discontinuous flux function,, Appl. Numer. Math., 57 (2007), 361. doi: 10.1016/j.apnum.2006.04.003. Google Scholar

[20]

M. Hilliges and W. Weidlich, A phenomenological model for dynamic traffic flow in networks,, Transportation Research Part B, 29 (1995), 407. doi: 10.1016/0191-2615(95)00018-9. Google Scholar

[21]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM J. Math. Anal., 26 (1995), 999. doi: 10.1137/S0036141093243289. Google Scholar

[22]

J.-P. Lebacque, The Godunov scheme and what it means for first order traffic flow models,, in Proc. of the 13th international symposium on transportation and traffic theory, (1996), 647. Google Scholar

[23]

R. J. LeVeque, Numerical Methods for Conservation Laws,, Birkhäuser, (1992). doi: 10.1007/978-3-0348-8629-1. Google Scholar

[24]

M. J. Lighthill and G. B. Whitham, On kinetic waves. II. Theory of traffic flows on long crowded roads,, Proc. Roy. Soc. Lond. A, 229 (1955), 317. doi: 10.1098/rspa.1955.0089. Google Scholar

[25]

M. Mercier, Traffic flow modelling with junctions,, J. Math. Anal. Appl., 350 (2009), 369. doi: 10.1016/j.jmaa.2008.09.040. Google Scholar

[26]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42. Google Scholar

[27]

C. M. J. Tampère, R. Corthout, D. Cattrysse and L. H. Immers, A generic class of first order node models for dynamic macroscopic simulation of traffic flows,, Transportation Research Part B, 45 (2011), 289. Google Scholar

[28]

J. D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux,, SIAM J. Numer. Anal., 38 (2000), 681. doi: 10.1137/S0036142999363668. Google Scholar

[29]

G. C. K. Wong and S. C. Wong, A multi-class traffic flow model - an extension of LWR model with heterogeneous drivers,, Transportation Research Part A, 36 (2002), 827. doi: 10.1016/S0965-8564(01)00042-8. Google Scholar

show all references

References:
[1]

B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux,, Arch. Rational Mech. Anal., 201 (2011), 27. doi: 10.1007/s00205-010-0389-4. Google Scholar

[2]

S. Benzoni-Gavage and R. M. Colombo, An $n$-populations model for traffic flow,, European J. Appl. Math., 14 (2003), 587. doi: 10.1017/S0956792503005266. Google Scholar

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,, Oxford Lecture Series in Mathematics, (2000). Google Scholar

[4]

A. Bressan and K. T. Nguyen, Conservation law models for traffic flow on a network of roads,, Preprint, (2014). Google Scholar

[5]

G. Bretti, M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 379. doi: 10.3934/dcdss.2014.7.379. Google Scholar

[6]

R. Bürger and K. H. Karlsen, Conservation laws with discontinuous flux: A short introduction,, J. Eng. Math., 60 (2008), 241. doi: 10.1007/s10665-008-9213-7. Google Scholar

[7]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862. doi: 10.1137/S0036141004402683. Google Scholar

[8]

E. Cristiani, C. de Fabritiis and B. Piccoli, A fluid dynamic approach for traffic forecast from mobile sensor data,, Commun. Appl. Ind. Math., 1 (2010), 54. doi: 10.1685/2010CAIM487. Google Scholar

[9]

C. F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory,, Transportation Research Part B, 28 (1994), 269. doi: 10.1016/0191-2615(94)90002-7. Google Scholar

[10]

C. F. Daganzo, The cell transmission model, part II: Network traffic,, Transportation Research Part B, 29 (1995), 79. doi: 10.1016/0191-2615(94)00022-R. Google Scholar

[11]

M. Garavello and P. Goatin, The Cauchy problem at a node with buffer,, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1915. doi: 10.3934/dcds.2012.32.1915. Google Scholar

[12]

M. Garavello and B. Piccoli, Source-destination flow on a road network,, Comm. Math. Sci., 3 (2005), 261. doi: 10.4310/CMS.2005.v3.n3.a1. Google Scholar

[13]

M. Garavello and B. Piccoli, Traffic Flow on Networks,, AIMS Series on Applied Mathematics, (2006). Google Scholar

[14]

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks,, Advances in Dynamic Network Modeling in Complex Transportation Systems, 2 (2013), 143. doi: 10.1007/978-1-4614-6243-9_6. Google Scholar

[15]

R. Haberman, Mathematical Models: Mechanical Vibrations, Population Dynamics and Traffic Flow,, Prentice-Hall, (1977). Google Scholar

[16]

J. C. Herrera and A. M. Bayen, Incorporation of Lagrangian measurements in freeway traffic state estimation,, Transportation Research Part B, 44 (2010), 460. doi: 10.1016/j.trb.2009.10.005. Google Scholar

[17]

M. Herty, C. Kirchner, S. Moutari and M. Rascle, Multicommodity flows on road networks,, Commun. Math. Sci., 6 (2008), 171. doi: 10.4310/CMS.2008.v6.n1.a8. Google Scholar

[18]

M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow,, Netw. Heterog. Media, 4 (2009), 813. doi: 10.3934/nhm.2009.4.813. Google Scholar

[19]

M. Herty, M. Seaïd and A. K. Singh, A domain decomposition method for conservation laws with discontinuous flux function,, Appl. Numer. Math., 57 (2007), 361. doi: 10.1016/j.apnum.2006.04.003. Google Scholar

[20]

M. Hilliges and W. Weidlich, A phenomenological model for dynamic traffic flow in networks,, Transportation Research Part B, 29 (1995), 407. doi: 10.1016/0191-2615(95)00018-9. Google Scholar

[21]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM J. Math. Anal., 26 (1995), 999. doi: 10.1137/S0036141093243289. Google Scholar

[22]

J.-P. Lebacque, The Godunov scheme and what it means for first order traffic flow models,, in Proc. of the 13th international symposium on transportation and traffic theory, (1996), 647. Google Scholar

[23]

R. J. LeVeque, Numerical Methods for Conservation Laws,, Birkhäuser, (1992). doi: 10.1007/978-3-0348-8629-1. Google Scholar

[24]

M. J. Lighthill and G. B. Whitham, On kinetic waves. II. Theory of traffic flows on long crowded roads,, Proc. Roy. Soc. Lond. A, 229 (1955), 317. doi: 10.1098/rspa.1955.0089. Google Scholar

[25]

M. Mercier, Traffic flow modelling with junctions,, J. Math. Anal. Appl., 350 (2009), 369. doi: 10.1016/j.jmaa.2008.09.040. Google Scholar

[26]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42. Google Scholar

[27]

C. M. J. Tampère, R. Corthout, D. Cattrysse and L. H. Immers, A generic class of first order node models for dynamic macroscopic simulation of traffic flows,, Transportation Research Part B, 45 (2011), 289. Google Scholar

[28]

J. D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux,, SIAM J. Numer. Anal., 38 (2000), 681. doi: 10.1137/S0036142999363668. Google Scholar

[29]

G. C. K. Wong and S. C. Wong, A multi-class traffic flow model - an extension of LWR model with heterogeneous drivers,, Transportation Research Part A, 36 (2002), 827. doi: 10.1016/S0965-8564(01)00042-8. Google Scholar

[1]

Florent Berthelin, Damien Broizat. A model for the evolution of traffic jams in multi-lane. Kinetic & Related Models, 2012, 5 (4) : 697-728. doi: 10.3934/krm.2012.5.697

[2]

Emiliano Cristiani, Elisa Iacomini. An interface-free multi-scale multi-order model for traffic flow. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6189-6207. doi: 10.3934/dcdsb.2019135

[3]

Emiliano Cristiani, Fabio S. Priuli. A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 857-876. doi: 10.3934/nhm.2015.10.857

[4]

Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 749-785. doi: 10.3934/nhm.2015.10.749

[5]

Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch. Two-way multi-lane traffic model for pedestrians in corridors. Networks & Heterogeneous Media, 2011, 6 (3) : 351-381. doi: 10.3934/nhm.2011.6.351

[6]

Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105

[7]

Jinliang Wang, Hongying Shu. Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences & Engineering, 2016, 13 (1) : 209-225. doi: 10.3934/mbe.2016.13.209

[8]

Mauro Garavello. The LWR traffic model at a junction with multibuffers. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 463-482. doi: 10.3934/dcdss.2014.7.463

[9]

Amy Veprauskas, J. M. Cushing. Evolutionary dynamics of a multi-trait semelparous model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 655-676. doi: 10.3934/dcdsb.2016.21.655

[10]

Khalid Boushaba. A multi layer method applied to a model of phytoplankton. Networks & Heterogeneous Media, 2007, 2 (1) : 37-54. doi: 10.3934/nhm.2007.2.37

[11]

Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Multi-scale model of bladder cancer development. Conference Publications, 2011, 2011 (Special) : 803-812. doi: 10.3934/proc.2011.2011.803

[12]

Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks & Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015

[13]

Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control & Related Fields, 2017, 7 (2) : 235-257. doi: 10.3934/mcrf.2017008

[14]

Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba. A multi-group SIR epidemic model with age structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3515-3550. doi: 10.3934/dcdsb.2016109

[15]

Amy Veprauskas, J. M. Cushing. Errata: Evolutionary dynamics of a multi-trait semelparous model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1023-1026. doi: 10.3934/dcdsb.2016.21.1023

[16]

Li Deng, Wenjie Bi, Haiying Liu, Kok Lay Teo. A multi-stage method for joint pricing and inventory model with promotion constrains. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020097

[17]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks & Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57

[18]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427

[19]

Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107

[20]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]