September  2014, 9(3): 553-573. doi: 10.3934/nhm.2014.9.553

Group pinning consensus under fixed and randomly switching topologies with acyclic partition

1. 

Department of Mathematics, Tongji University, Shanghai 200092, China

Received  December 2013 Revised  June 2014 Published  October 2014

This paper addresses group consensus problems in generic linear multi-agent systems with directed information flow over (i) fixed topology and (ii) randomly switching topology governed by a continuous-time homogeneous Markov process. We propose two types of pinning control protocols to ensure group consensus regardless of the magnitude of the coupling strengths among the agents. In the case of randomly switching topology, we show that the group consensus behavior is unrelated to the magnitude of the couplings among agents if the union of the topologies corresponding to the positive recurrent states of the Markov process possesses an acyclic partition. Sufficient conditions for achieving group consensus are presented in terms of simple graphic conditions, which are easy to be checked compared to conventional algebraic criteria. Simulation examples are also presented to validate the effectiveness of the theoretical results.
Citation: Yilun Shang. Group pinning consensus under fixed and randomly switching topologies with acyclic partition. Networks & Heterogeneous Media, 2014, 9 (3) : 553-573. doi: 10.3934/nhm.2014.9.553
References:
[1]

A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex networks,, Phys. Rep., 469 (2008), 93. doi: 10.1016/j.physrep.2008.09.002. Google Scholar

[2]

J. Bang-Jensen and G. Z. Gutin, Digraphs: Theory, Algorithm and Applications,, 2nd Ed., (2009). doi: 10.1007/978-1-84800-998-1. Google Scholar

[3]

V. N. Belykh, I. V. Belykh and M. Hasler, Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems,, Phys. Rev. E, 62 (2000), 6332. doi: 10.1103/PhysRevE.62.6332. Google Scholar

[4]

V. Borkar and P. P. Varaiya, Asymptotic agreement in distributed estimation,, IEEE Trans. Automat. Control, 27 (1982), 650. doi: 10.1109/TAC.1982.1102982. Google Scholar

[5]

T. Chen, X. Liu and W. Lu, Pinning complex networks by a single controller,, IEEE Trans. Circuit Syst. I, 54 (2007), 1317. doi: 10.1109/TCSI.2007.895383. Google Scholar

[6]

O. Costa and M. Fragoso, A unified approach for stochastic and mean square stability of continuous-time linear systems with Markovian jumping parameters and additive disturbances,, SIAM J. Contr. Optim., 44 (2005), 1165. doi: 10.1137/S0363012903434753. Google Scholar

[7]

T. Dahms, J. Lehnert and E. Schöll, Cluster and group synchronization in delay-coupled networks,, Phys. Rev. E, 86 (2012). doi: 10.1103/PhysRevE.86.016202. Google Scholar

[8]

X. Feng and K. A. Loparo, Stability of linear Markovian jump systems,, Proc. of the 29th IEEE Conf. Decision and Control, (1990), 1408. doi: 10.1109/CDC.1990.203842. Google Scholar

[9]

Y. Z. Feng, J. Lu, S. Xu and Y. Zou, Couple-group consensus for multi-agent networks of agents with discrete-time second-order dynamcis,, J. Franklin Institute, 350 (2013), 3277. doi: 10.1016/j.jfranklin.2013.07.004. Google Scholar

[10]

Y. Han, W. Lu and T. Chen, Cluster consensus in discrete-time networks of multiagents with inter-cluster nonidentical inputs,, IEEE Trans. Neural Networks and Learning Syst., 24 (2013), 566. Google Scholar

[11]

A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules,, IEEE Trans. Autom. Control, 48 (2003), 988. doi: 10.1109/TAC.2003.812781. Google Scholar

[12]

Z. Li, Z. Duan and G. Chen, Dynamic consensus of linear multi-agent systems,, IET Control Theory Appl., 5 (2011), 19. doi: 10.1049/iet-cta.2009.0466. Google Scholar

[13]

W. Lu, F. M. Atay and J. Jost, Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays,, Netw. Heterog. Media, 6 (2011), 329. doi: 10.3934/nhm.2011.6.329. Google Scholar

[14]

I. Matei and J. S. Baras, Convergence results for the linear consensus problem under Markovian random graphs,, SIAM J. Control Optim., 51 (2013), 1574. doi: 10.1137/100816870. Google Scholar

[15]

G. Miao, S. Xu and Y. Zou, Necessary and sufficient conditions for mean square consensus under Markov switching topologies,, Int. J. Syst. Sci., 44 (2013), 178. doi: 10.1080/00207721.2011.598961. Google Scholar

[16]

R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems,, Proceedings of the IEEE, 95 (2007), 215. doi: 10.1109/JPROC.2006.887293. Google Scholar

[17]

R. Olfati-Saber and R. M. Murray, Consensus problem in networks of agents with switching topology and time-delays,, IEEE Trans. Autom. Control, 49 (2004), 1520. doi: 10.1109/TAC.2004.834113. Google Scholar

[18]

L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems,, Phys. Rev. Lett., 80 (1998), 2109. doi: 10.1103/PhysRevLett.80.2109. Google Scholar

[19]

J. Qin and C. Yu, Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition,, Automatica, 49 (2013), 2898. doi: 10.1016/j.automatica.2013.06.017. Google Scholar

[20]

W. Ren and R. W. Beard, Consensus seeking in multiagent systems under dynamically changing interation topologies,, IEEE Trans. Autom. Control, 50 (2005), 655. doi: 10.1109/TAC.2005.846556. Google Scholar

[21]

A. H. Roger and R. J. Charles, Matrix Analysis,, Cambridge University Press, (1985). doi: 10.1017/CBO9780511810817. Google Scholar

[22]

E. Seneta, Non-negative Matrices and Markov Chains,, Springer, (2006). Google Scholar

[23]

Y. Shang, Multi-agent coordination in directed moving neighborhood random networks,, Chin. Phys. B, 19 (2010). Google Scholar

[24]

Y. Shang, Finite-time consensus for multi-agent systems with fixed topologies,, Int. J. Syst. Sci., 43 (2012), 499. doi: 10.1080/00207721.2010.517857. Google Scholar

[25]

Y. Shang, $L^1$ group consensus of multi-agent systems with stochastic inputs under directed interaction topology,, Int. J. Control, 86 (2013), 1. doi: 10.1080/00207179.2012.715753. Google Scholar

[26]

Y. Shang, Continuous-time average consensus under dynamically changing topologies and multiple time-varying delays,, Appl. Math. Comput., 244 (2014), 457. doi: 10.1016/j.amc.2014.07.019. Google Scholar

[27]

Y. Shang, Group consensus of multi-agent systems in directed networks with noises and time delays,, Int. J. Syst. Sci., (). doi: 10.1080/00207721.2013.862582. Google Scholar

[28]

Y. Shang, Group consensus in generic linear multi-agent sytesms with inter-group non-identical inputs,, Cogent Engineering, 1 (2014). doi: 10.1080/23311916.2014.947761. Google Scholar

[29]

F. Sorrentino and E. Ott, Network synchronization of groups,, Phys. Rev. E, 76 (2007). doi: 10.1103/PhysRevE.76.056114. Google Scholar

[30]

R. Stanley, Acyclic orientations of graphs,, Discrete Math., 5 (1973), 171. doi: 10.1016/0012-365X(73)90108-8. Google Scholar

[31]

W. Sun, Y. Q. Bai, R. Jia, R. Xiong and J. Chen, Multi-group consensus via pinning control with non-linear heterogeneous agents,, Proc. 8th Asian Control Conference, (2011), 323. Google Scholar

[32]

C. Tan, G.-P. Liu and G.-R. Duan, Couple-group consensus of multi-agent systems with directed and fixed topology,, Proc. 30th Chinese Contr. Conf., (2011), 6515. Google Scholar

[33]

B. Touri and A. Nedić, On ergodicity, infinite flow, and consensus in random models,, IEEE Trans. Autom. Control, 56 (2011), 1593. doi: 10.1109/TAC.2010.2091174. Google Scholar

[34]

J. N. Tsitsiklis, Problems in Decentralized Decision Making and Computation,, Ph.D. Dissertation, (1984). Google Scholar

[35]

F. Xiao and L. Wang, Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays,, IEEE Trans. Autom. Control, 53 (2008), 1804. doi: 10.1109/TAC.2008.929381. Google Scholar

[36]

K. You, Z. Li and L. Xie, Consensus condition for linear multi-agent systems over randomly switching topologies,, Automatica, 49 (2013), 3125. doi: 10.1016/j.automatica.2013.07.024. Google Scholar

[37]

W. Yu, G. Chen and J. Lü, On pinning control synchronization of complex dynamical networks,, Automatica, 45 (2009), 429. doi: 10.1016/j.automatica.2008.07.016. Google Scholar

[38]

J. Yu and L. Wang, Group consensus of multi-agent sytems with undirected communication graphs,, Proc. 7th Asian Control Conf., (2009), 105. Google Scholar

[39]

J. Yu and L. Wang, Group consensus in multi-agent systems with switching topologies and communication delays,, Syst. Control Lett., 59 (2010), 340. doi: 10.1016/j.sysconle.2010.03.009. Google Scholar

show all references

References:
[1]

A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex networks,, Phys. Rep., 469 (2008), 93. doi: 10.1016/j.physrep.2008.09.002. Google Scholar

[2]

J. Bang-Jensen and G. Z. Gutin, Digraphs: Theory, Algorithm and Applications,, 2nd Ed., (2009). doi: 10.1007/978-1-84800-998-1. Google Scholar

[3]

V. N. Belykh, I. V. Belykh and M. Hasler, Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems,, Phys. Rev. E, 62 (2000), 6332. doi: 10.1103/PhysRevE.62.6332. Google Scholar

[4]

V. Borkar and P. P. Varaiya, Asymptotic agreement in distributed estimation,, IEEE Trans. Automat. Control, 27 (1982), 650. doi: 10.1109/TAC.1982.1102982. Google Scholar

[5]

T. Chen, X. Liu and W. Lu, Pinning complex networks by a single controller,, IEEE Trans. Circuit Syst. I, 54 (2007), 1317. doi: 10.1109/TCSI.2007.895383. Google Scholar

[6]

O. Costa and M. Fragoso, A unified approach for stochastic and mean square stability of continuous-time linear systems with Markovian jumping parameters and additive disturbances,, SIAM J. Contr. Optim., 44 (2005), 1165. doi: 10.1137/S0363012903434753. Google Scholar

[7]

T. Dahms, J. Lehnert and E. Schöll, Cluster and group synchronization in delay-coupled networks,, Phys. Rev. E, 86 (2012). doi: 10.1103/PhysRevE.86.016202. Google Scholar

[8]

X. Feng and K. A. Loparo, Stability of linear Markovian jump systems,, Proc. of the 29th IEEE Conf. Decision and Control, (1990), 1408. doi: 10.1109/CDC.1990.203842. Google Scholar

[9]

Y. Z. Feng, J. Lu, S. Xu and Y. Zou, Couple-group consensus for multi-agent networks of agents with discrete-time second-order dynamcis,, J. Franklin Institute, 350 (2013), 3277. doi: 10.1016/j.jfranklin.2013.07.004. Google Scholar

[10]

Y. Han, W. Lu and T. Chen, Cluster consensus in discrete-time networks of multiagents with inter-cluster nonidentical inputs,, IEEE Trans. Neural Networks and Learning Syst., 24 (2013), 566. Google Scholar

[11]

A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules,, IEEE Trans. Autom. Control, 48 (2003), 988. doi: 10.1109/TAC.2003.812781. Google Scholar

[12]

Z. Li, Z. Duan and G. Chen, Dynamic consensus of linear multi-agent systems,, IET Control Theory Appl., 5 (2011), 19. doi: 10.1049/iet-cta.2009.0466. Google Scholar

[13]

W. Lu, F. M. Atay and J. Jost, Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays,, Netw. Heterog. Media, 6 (2011), 329. doi: 10.3934/nhm.2011.6.329. Google Scholar

[14]

I. Matei and J. S. Baras, Convergence results for the linear consensus problem under Markovian random graphs,, SIAM J. Control Optim., 51 (2013), 1574. doi: 10.1137/100816870. Google Scholar

[15]

G. Miao, S. Xu and Y. Zou, Necessary and sufficient conditions for mean square consensus under Markov switching topologies,, Int. J. Syst. Sci., 44 (2013), 178. doi: 10.1080/00207721.2011.598961. Google Scholar

[16]

R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems,, Proceedings of the IEEE, 95 (2007), 215. doi: 10.1109/JPROC.2006.887293. Google Scholar

[17]

R. Olfati-Saber and R. M. Murray, Consensus problem in networks of agents with switching topology and time-delays,, IEEE Trans. Autom. Control, 49 (2004), 1520. doi: 10.1109/TAC.2004.834113. Google Scholar

[18]

L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems,, Phys. Rev. Lett., 80 (1998), 2109. doi: 10.1103/PhysRevLett.80.2109. Google Scholar

[19]

J. Qin and C. Yu, Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition,, Automatica, 49 (2013), 2898. doi: 10.1016/j.automatica.2013.06.017. Google Scholar

[20]

W. Ren and R. W. Beard, Consensus seeking in multiagent systems under dynamically changing interation topologies,, IEEE Trans. Autom. Control, 50 (2005), 655. doi: 10.1109/TAC.2005.846556. Google Scholar

[21]

A. H. Roger and R. J. Charles, Matrix Analysis,, Cambridge University Press, (1985). doi: 10.1017/CBO9780511810817. Google Scholar

[22]

E. Seneta, Non-negative Matrices and Markov Chains,, Springer, (2006). Google Scholar

[23]

Y. Shang, Multi-agent coordination in directed moving neighborhood random networks,, Chin. Phys. B, 19 (2010). Google Scholar

[24]

Y. Shang, Finite-time consensus for multi-agent systems with fixed topologies,, Int. J. Syst. Sci., 43 (2012), 499. doi: 10.1080/00207721.2010.517857. Google Scholar

[25]

Y. Shang, $L^1$ group consensus of multi-agent systems with stochastic inputs under directed interaction topology,, Int. J. Control, 86 (2013), 1. doi: 10.1080/00207179.2012.715753. Google Scholar

[26]

Y. Shang, Continuous-time average consensus under dynamically changing topologies and multiple time-varying delays,, Appl. Math. Comput., 244 (2014), 457. doi: 10.1016/j.amc.2014.07.019. Google Scholar

[27]

Y. Shang, Group consensus of multi-agent systems in directed networks with noises and time delays,, Int. J. Syst. Sci., (). doi: 10.1080/00207721.2013.862582. Google Scholar

[28]

Y. Shang, Group consensus in generic linear multi-agent sytesms with inter-group non-identical inputs,, Cogent Engineering, 1 (2014). doi: 10.1080/23311916.2014.947761. Google Scholar

[29]

F. Sorrentino and E. Ott, Network synchronization of groups,, Phys. Rev. E, 76 (2007). doi: 10.1103/PhysRevE.76.056114. Google Scholar

[30]

R. Stanley, Acyclic orientations of graphs,, Discrete Math., 5 (1973), 171. doi: 10.1016/0012-365X(73)90108-8. Google Scholar

[31]

W. Sun, Y. Q. Bai, R. Jia, R. Xiong and J. Chen, Multi-group consensus via pinning control with non-linear heterogeneous agents,, Proc. 8th Asian Control Conference, (2011), 323. Google Scholar

[32]

C. Tan, G.-P. Liu and G.-R. Duan, Couple-group consensus of multi-agent systems with directed and fixed topology,, Proc. 30th Chinese Contr. Conf., (2011), 6515. Google Scholar

[33]

B. Touri and A. Nedić, On ergodicity, infinite flow, and consensus in random models,, IEEE Trans. Autom. Control, 56 (2011), 1593. doi: 10.1109/TAC.2010.2091174. Google Scholar

[34]

J. N. Tsitsiklis, Problems in Decentralized Decision Making and Computation,, Ph.D. Dissertation, (1984). Google Scholar

[35]

F. Xiao and L. Wang, Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays,, IEEE Trans. Autom. Control, 53 (2008), 1804. doi: 10.1109/TAC.2008.929381. Google Scholar

[36]

K. You, Z. Li and L. Xie, Consensus condition for linear multi-agent systems over randomly switching topologies,, Automatica, 49 (2013), 3125. doi: 10.1016/j.automatica.2013.07.024. Google Scholar

[37]

W. Yu, G. Chen and J. Lü, On pinning control synchronization of complex dynamical networks,, Automatica, 45 (2009), 429. doi: 10.1016/j.automatica.2008.07.016. Google Scholar

[38]

J. Yu and L. Wang, Group consensus of multi-agent sytems with undirected communication graphs,, Proc. 7th Asian Control Conf., (2009), 105. Google Scholar

[39]

J. Yu and L. Wang, Group consensus in multi-agent systems with switching topologies and communication delays,, Syst. Control Lett., 59 (2010), 340. doi: 10.1016/j.sysconle.2010.03.009. Google Scholar

[1]

Wenlian Lu, Fatihcan M. Atay, Jürgen Jost. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks & Heterogeneous Media, 2011, 6 (2) : 329-349. doi: 10.3934/nhm.2011.6.329

[2]

Christian Pötzsche, Stefan Siegmund, Fabian Wirth. A spectral characterization of exponential stability for linear time-invariant systems on time scales. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1223-1241. doi: 10.3934/dcds.2003.9.1223

[3]

Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471

[4]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[5]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

[6]

Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261

[7]

Carol C. Horvitz, Anthony L. Koop, Kelley D. Erickson. Time-invariant and stochastic disperser-structured matrix models: Invasion rates of fleshy-fruited exotic shrubs. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1639-1662. doi: 10.3934/dcdsb.2015.20.1639

[8]

Sebastià Galmés. Markovian characterization of node lifetime in a time-driven wireless sensor network. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 763-780. doi: 10.3934/naco.2011.1.763

[9]

Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277

[10]

Hong Man, Yibin Yu, Yuebang He, Hui Huang. Design of one type of linear network prediction controller for multi-agent system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 727-734. doi: 10.3934/dcdss.2019047

[11]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[12]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

[13]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[14]

Fuke Wu, George Yin, Le Yi Wang. Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching. Mathematical Control & Related Fields, 2015, 5 (3) : 697-719. doi: 10.3934/mcrf.2015.5.697

[15]

Mario Roy. A new variation of Bowen's formula for graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2533-2551. doi: 10.3934/dcds.2012.32.2533

[16]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[17]

Yaozhong Hu, David Nualart, Xiaobin Sun, Yingchao Xie. Smoothness of density for stochastic differential equations with Markovian switching. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3615-3631. doi: 10.3934/dcdsb.2018307

[18]

Fritz Colonius, Guilherme Mazanti. Decay rates for stabilization of linear continuous-time systems with random switching. Mathematical Control & Related Fields, 2019, 9 (1) : 39-58. doi: 10.3934/mcrf.2019002

[19]

Jiaqin Wei. Time-inconsistent optimal control problems with regime-switching. Mathematical Control & Related Fields, 2017, 7 (4) : 585-622. doi: 10.3934/mcrf.2017022

[20]

Huan Su, Pengfei Wang, Xiaohua Ding. Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 253-269. doi: 10.3934/dcdsb.2016.21.253

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]