• Previous Article
    Mathematical modelling of a mushy region formation during sulphation of calcium carbonate
  • NHM Home
  • This Issue
  • Next Article
    Homogenization of a poro-elasticity model coupled with diffusive transport and a first order reaction for concrete
December  2014, 9(4): 617-634. doi: 10.3934/nhm.2014.9.617

Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity

1. 

Waseda Institute for Advanced Study, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan

2. 

Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan

Received  July 2014 Revised  September 2014 Published  December 2014

We study spring-block systems which are equivalent to the P1-finite element methods for the linear elliptic partial differential equation of second order and for the equations of linear elasticity. Each derived spring-block system is consistent with the original partial differential equation, since it is discretized by P1-FEM. Symmetry and positive definiteness of the scalar and tensor-valued spring constants are studied in two dimensions. Under the acuteness condition of the triangular mesh, positive definiteness of the scalar spring constant is obtained. In case of homogeneous linear elasticity, we show the symmetry of the tensor-valued spring constant in the two dimensional case. For isotropic elastic materials, we give a necessary and sufficient condition for the positive definiteness of the tensor-valued spring constant. Consequently, if Poisson's ratio of the elastic material is small enough, like concrete, we can construct a consistent spring-block system with positive definite tensor-valued spring constant.
Citation: Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617
References:
[1]

T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing,, International Journal for Numerical Methods in Engineering, 45 (1999), 601.  doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.  Google Scholar

[2]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, Springer, (2002).  doi: 10.1007/978-1-4757-3658-8.  Google Scholar

[3]

F. Camborde, C. Mariotti and F. V. Donzé, Numerical study of rock and concrete behaviour by discrete element modelling,, Computers and Geotechnics, 27 (2000), 225.  doi: 10.1016/S0266-352X(00)00013-6.  Google Scholar

[4]

H. Chen, L. Wijerathne, M. Hori and T. Ichimura, Stability of dynamic growth of two anti-symmetric cracks using PDS-FEM,, Journal of Japan Society of Civil Engineers, 68 (2012), 10.  doi: 10.2208/jscejam.68.10.  Google Scholar

[5]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, North-Holland, (1978).   Google Scholar

[6]

J. M. Gere, Mechanics of Materials,, Brooks/Cole-Thomson Learning, (2004).   Google Scholar

[7]

M. Hori, K. Oguni and H. Sakaguchi, Proposal of FEM implemented with particle discretization for analysis of failure phenomena,, Journal of the Mechanics and Physics of Solids, 53 (2005), 681.  doi: 10.1016/j.jmps.2004.08.005.  Google Scholar

[8]

M. Kimura and H. Notsu, A mathematical model of fracture phenomena on a spring-block system,, Kyoto University RIMS Kokyuroku, 1848 (2013), 171.   Google Scholar

[9]

J. Karátson and S. Korotov, An algebraic discrete maximum principle in Hilbert space with applications to nonlinear cooperative elliptic systems,, SIAM Journal on Numerical Analysis, 47 (2009), 2518.  doi: 10.1137/080729566.  Google Scholar

[10]

A. Munjiza, The Combined Finite-Discrete Element Method,, John Wiley & Sons, (2004).  doi: 10.1002/0470020180.  Google Scholar

[11]

H. Notsu and M. Tabata, A single-step characteristic-curve finite element scheme of second order in time for the incompressible Navier-Stokes equations,, Journal of Scientific Computing, 38 (2009), 1.  doi: 10.1007/s10915-008-9217-5.  Google Scholar

[12]

A. Okabe, B. Boots, K. Sugihara and S.-N. Choi, Spatial Tessellation: Concepts and Applications of Voronoi Diagrams,, John Wiley and Sons, (1992).   Google Scholar

[13]

G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques, deuxième memoire, recherche sur les parallelloèdres primitifs,, Journal für die Reine und Angewandte Mathematik, 134 (1908), 198.   Google Scholar

show all references

References:
[1]

T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing,, International Journal for Numerical Methods in Engineering, 45 (1999), 601.  doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.  Google Scholar

[2]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, Springer, (2002).  doi: 10.1007/978-1-4757-3658-8.  Google Scholar

[3]

F. Camborde, C. Mariotti and F. V. Donzé, Numerical study of rock and concrete behaviour by discrete element modelling,, Computers and Geotechnics, 27 (2000), 225.  doi: 10.1016/S0266-352X(00)00013-6.  Google Scholar

[4]

H. Chen, L. Wijerathne, M. Hori and T. Ichimura, Stability of dynamic growth of two anti-symmetric cracks using PDS-FEM,, Journal of Japan Society of Civil Engineers, 68 (2012), 10.  doi: 10.2208/jscejam.68.10.  Google Scholar

[5]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, North-Holland, (1978).   Google Scholar

[6]

J. M. Gere, Mechanics of Materials,, Brooks/Cole-Thomson Learning, (2004).   Google Scholar

[7]

M. Hori, K. Oguni and H. Sakaguchi, Proposal of FEM implemented with particle discretization for analysis of failure phenomena,, Journal of the Mechanics and Physics of Solids, 53 (2005), 681.  doi: 10.1016/j.jmps.2004.08.005.  Google Scholar

[8]

M. Kimura and H. Notsu, A mathematical model of fracture phenomena on a spring-block system,, Kyoto University RIMS Kokyuroku, 1848 (2013), 171.   Google Scholar

[9]

J. Karátson and S. Korotov, An algebraic discrete maximum principle in Hilbert space with applications to nonlinear cooperative elliptic systems,, SIAM Journal on Numerical Analysis, 47 (2009), 2518.  doi: 10.1137/080729566.  Google Scholar

[10]

A. Munjiza, The Combined Finite-Discrete Element Method,, John Wiley & Sons, (2004).  doi: 10.1002/0470020180.  Google Scholar

[11]

H. Notsu and M. Tabata, A single-step characteristic-curve finite element scheme of second order in time for the incompressible Navier-Stokes equations,, Journal of Scientific Computing, 38 (2009), 1.  doi: 10.1007/s10915-008-9217-5.  Google Scholar

[12]

A. Okabe, B. Boots, K. Sugihara and S.-N. Choi, Spatial Tessellation: Concepts and Applications of Voronoi Diagrams,, John Wiley and Sons, (1992).   Google Scholar

[13]

G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques, deuxième memoire, recherche sur les parallelloèdres primitifs,, Journal für die Reine und Angewandte Mathematik, 134 (1908), 198.   Google Scholar

[1]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[2]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[3]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[4]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[5]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[6]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[9]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[10]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[11]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[12]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[13]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[14]

Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2020  doi: 10.3934/mfc.2021001

[15]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[16]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[17]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[18]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[19]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[20]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]