• Previous Article
    Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium
  • NHM Home
  • This Issue
  • Next Article
    Mathematical modelling of a mushy region formation during sulphation of calcium carbonate
December  2014, 9(4): 655-668. doi: 10.3934/nhm.2014.9.655

A one dimensional free boundary problem for adsorption phenomena

1. 

Division of General Education, Nagaoka National College of Technology, 888, Nishikatakai, Nagaoka, Niigata, 940-8532, Japan

2. 

Japan Woman's University, Department of Mathematics and Physical Sciences, Faculty of Science, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan

3. 

Department of Mathematics, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, 468-8502

4. 

Department of Mathematics, Faculty of Education, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522

Received  February 2014 Revised  September 2014 Published  December 2014

In this paper we deal with a one-dimensional free boundary problem, which is a mathematical model for an adsorption phenomena appearing in concrete carbonation process. This model was proposed in line of previous studies of three dimensional concrete carbonation process. The main result in this paper is concerned with the existence and uniqueness of a time-local solution to the free boundary problem. This result will be obtained by means of the abstract theory of nonlinear evolution equations and Banach's fixed point theorem, and especially, the maximum principle applied to our problem will play a very important role to obtain the uniform estimate to approximate solutions.
Citation: Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks & Heterogeneous Media, 2014, 9 (4) : 655-668. doi: 10.3934/nhm.2014.9.655
References:
[1]

T. Aiki and K. Kumazaki, Well-posedness of a mathematical model for moisture transport appearing in concrete carbonation process,, Adv. Math. Sci. Appl., 21 (2011), 361. Google Scholar

[2]

T. Aiki and K. Kumazaki, Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process,, Physica B, 407 (2012), 1424. doi: 10.1016/j.physb.2011.10.016. Google Scholar

[3]

T. Aiki and K. Kumazaki, Mathematical modeling of concrete carbonation process with hysteresis effect., Sūrikaisekikenkyūsho Kōkyūroku, 1792 (2012), 98. Google Scholar

[4]

T. Aiki and A. Muntean, Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structures,, Adv. Math. Sci. Appl., 19 (2009), 109. Google Scholar

[5]

T. Aiki and A. Muntean, Large time behavior of solutions to concrete carbonation problem,, Communications on Pure and Applied Analysis, 9 (2010), 1117. doi: 10.3934/cpaa.2010.9.1117. Google Scholar

[6]

T. Aiki and A. Muntean, A free-boundary problem for concrete carbonation: Rigorous justification of $\sqrtt$-law of propagation,, Interfaces and Free Bound., 15 (2013), 167. doi: 10.4171/IFB/299. Google Scholar

[7]

T. Aiki and A. Muntean, Large-time asymptotics of moving-reaction interfaces involving nonlinear Henry's law and time-dependent Dirichlet data,, Nonlinear Anal., 93 (2013), 3. doi: 10.1016/j.na.2013.07.002. Google Scholar

[8]

T. Aiki, Y. Murase, N. Sato and K. Shirawaka, A mathematical model for a hysteresis appearing in adsorption phenomena,, Sūrikaisekikenkyūsho Kōkyūroku, 1856 (2013), 1. Google Scholar

[9]

A. Fasano and M. Primicerio, Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions,, J. Math. Anal. Appl., 72 (1979), 247. doi: 10.1016/0022-247X(79)90287-7. Google Scholar

[10]

A. Fasano and M. Primicerio, General free-boundary problems for the heat equation. II,, J. Math. Anal. Appl., 58 (1977), 202. doi: 10.1016/0022-247X(77)90239-6. Google Scholar

[11]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, Bull. Fac. Education, 30 (1981), 1. Google Scholar

[12]

K. Maekawa, R. Chaube and T. Kishi, Modeling of Concrete Performance,, Taylor and Francis, (1999). Google Scholar

[13]

K. Maekawa, T. Ishida and T. Kishi, Multi-scale modeling of concrete performance,, Journal of Advanced Concrete Technology, 1 (2003), 91. doi: 10.3151/jact.1.91. Google Scholar

[14]

A. Muntean and M. Böhm, A moving-boundary problem for concrete carbonation: Global existence and uniqueness of solutions,, Journal of Mathematical Analysis and Applications, 350 (2009), 234. doi: 10.1016/j.jmaa.2008.09.044. Google Scholar

show all references

References:
[1]

T. Aiki and K. Kumazaki, Well-posedness of a mathematical model for moisture transport appearing in concrete carbonation process,, Adv. Math. Sci. Appl., 21 (2011), 361. Google Scholar

[2]

T. Aiki and K. Kumazaki, Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process,, Physica B, 407 (2012), 1424. doi: 10.1016/j.physb.2011.10.016. Google Scholar

[3]

T. Aiki and K. Kumazaki, Mathematical modeling of concrete carbonation process with hysteresis effect., Sūrikaisekikenkyūsho Kōkyūroku, 1792 (2012), 98. Google Scholar

[4]

T. Aiki and A. Muntean, Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structures,, Adv. Math. Sci. Appl., 19 (2009), 109. Google Scholar

[5]

T. Aiki and A. Muntean, Large time behavior of solutions to concrete carbonation problem,, Communications on Pure and Applied Analysis, 9 (2010), 1117. doi: 10.3934/cpaa.2010.9.1117. Google Scholar

[6]

T. Aiki and A. Muntean, A free-boundary problem for concrete carbonation: Rigorous justification of $\sqrtt$-law of propagation,, Interfaces and Free Bound., 15 (2013), 167. doi: 10.4171/IFB/299. Google Scholar

[7]

T. Aiki and A. Muntean, Large-time asymptotics of moving-reaction interfaces involving nonlinear Henry's law and time-dependent Dirichlet data,, Nonlinear Anal., 93 (2013), 3. doi: 10.1016/j.na.2013.07.002. Google Scholar

[8]

T. Aiki, Y. Murase, N. Sato and K. Shirawaka, A mathematical model for a hysteresis appearing in adsorption phenomena,, Sūrikaisekikenkyūsho Kōkyūroku, 1856 (2013), 1. Google Scholar

[9]

A. Fasano and M. Primicerio, Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions,, J. Math. Anal. Appl., 72 (1979), 247. doi: 10.1016/0022-247X(79)90287-7. Google Scholar

[10]

A. Fasano and M. Primicerio, General free-boundary problems for the heat equation. II,, J. Math. Anal. Appl., 58 (1977), 202. doi: 10.1016/0022-247X(77)90239-6. Google Scholar

[11]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, Bull. Fac. Education, 30 (1981), 1. Google Scholar

[12]

K. Maekawa, R. Chaube and T. Kishi, Modeling of Concrete Performance,, Taylor and Francis, (1999). Google Scholar

[13]

K. Maekawa, T. Ishida and T. Kishi, Multi-scale modeling of concrete performance,, Journal of Advanced Concrete Technology, 1 (2003), 91. doi: 10.3151/jact.1.91. Google Scholar

[14]

A. Muntean and M. Böhm, A moving-boundary problem for concrete carbonation: Global existence and uniqueness of solutions,, Journal of Mathematical Analysis and Applications, 350 (2009), 234. doi: 10.1016/j.jmaa.2008.09.044. Google Scholar

[1]

Sergey Degtyarev. Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3625-3699. doi: 10.3934/dcds.2017156

[2]

Weiqing Xie. A free boundary problem arising from the process of Czochralski crystal growth. Conference Publications, 2001, 2001 (Special) : 380-385. doi: 10.3934/proc.2001.2001.380

[3]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[4]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[5]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[6]

Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 337-348. doi: 10.3934/dcdsb.2004.4.337

[7]

Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 44-53. doi: 10.3934/proc.2007.2007.44

[8]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[9]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[10]

Micah Webster, Patrick Guidotti. Boundary dynamics of a two-dimensional diffusive free boundary problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 713-736. doi: 10.3934/dcds.2010.26.713

[11]

Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789

[12]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic type chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 667-684. doi: 10.3934/krm.2015.8.667

[13]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997

[14]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[15]

J. I. Díaz, J. F. Padial. On a free-boundary problem modeling the action of a limiter on a plasma. Conference Publications, 2007, 2007 (Special) : 313-322. doi: 10.3934/proc.2007.2007.313

[16]

Xiaofeng Ren. Shell structure as solution to a free boundary problem from block copolymer morphology. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 979-1003. doi: 10.3934/dcds.2009.24.979

[17]

Harunori Monobe, Hirokazu Ninomiya. Traveling wave solutions with convex domains for a free boundary problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 905-914. doi: 10.3934/dcds.2017037

[18]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[19]

Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357

[20]

Ping Chen, Daoyuan Fang, Ting Zhang. Free boundary problem for compressible flows with density--dependent viscosity coefficients. Communications on Pure & Applied Analysis, 2011, 10 (2) : 459-478. doi: 10.3934/cpaa.2011.10.459

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

[Back to Top]