-
Previous Article
Uniqueness of solutions to a mathematical model describing moisture transport in concrete materials
- NHM Home
- This Issue
-
Next Article
A one dimensional free boundary problem for adsorption phenomena
Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium
1. | Laboratoire de Mathématiques, CNRS et Université de Paris-Sud, 91405 Orsay, France |
2. | Faculty of Mathematics, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan |
References:
[1] |
N. Bouillard, R. Eymard, M. Henry, R. Herbin and D. Hilhorst, A fast precipitation and dissolution reaction for a reaction-diffusion system arising in a porous medium, Nonlinear Anal. Real World Appl., 10 (2009), 629-638.
doi: 10.1016/j.nonrwa.2007.10.019. |
[2] |
N. Bouillard, R. Eymard, R. Herbin and Ph. Montarnal, Diffusion with dissolution and precipitation in a porous medium: Mathematical analysis and numerical approximation of a simplified model, Math. Mod. Numer. Anal., 41 (2007), 975-1000.
doi: 10.1051/m2an:2007047. |
[3] | |
[4] |
R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, handbook of numerical analysis, Handb. Numer. Anal., VII (2000), 713-1020. |
[5] |
J. Pousin, Infinitely fast kinetics for dissolution and diffusion in open reactive systems, Nonlinear Analysis, 39 (2000), 261-279.
doi: 10.1016/S0362-546X(98)00162-X. |
show all references
References:
[1] |
N. Bouillard, R. Eymard, M. Henry, R. Herbin and D. Hilhorst, A fast precipitation and dissolution reaction for a reaction-diffusion system arising in a porous medium, Nonlinear Anal. Real World Appl., 10 (2009), 629-638.
doi: 10.1016/j.nonrwa.2007.10.019. |
[2] |
N. Bouillard, R. Eymard, R. Herbin and Ph. Montarnal, Diffusion with dissolution and precipitation in a porous medium: Mathematical analysis and numerical approximation of a simplified model, Math. Mod. Numer. Anal., 41 (2007), 975-1000.
doi: 10.1051/m2an:2007047. |
[3] | |
[4] |
R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, handbook of numerical analysis, Handb. Numer. Anal., VII (2000), 713-1020. |
[5] |
J. Pousin, Infinitely fast kinetics for dissolution and diffusion in open reactive systems, Nonlinear Analysis, 39 (2000), 261-279.
doi: 10.1016/S0362-546X(98)00162-X. |
[1] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[2] |
Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49 |
[3] |
Yan-Yu Chen, Yoshihito Kohsaka, Hirokazu Ninomiya. Traveling spots and traveling fingers in singular limit problems of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 697-714. doi: 10.3934/dcdsb.2014.19.697 |
[4] |
Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631 |
[5] |
E. C.M. Crooks, E. N. Dancer, Danielle Hilhorst. Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 39-44. doi: 10.3934/dcdsb.2007.8.39 |
[6] |
María del Mar González, Regis Monneau. Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1255-1286. doi: 10.3934/dcds.2012.32.1255 |
[7] |
M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079 |
[8] |
José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure and Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85 |
[9] |
Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks and Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369 |
[10] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[11] |
Rebecca McKay, Theodore Kolokolnikov. Stability transitions and dynamics of mesa patterns near the shadow limit of reaction-diffusion systems in one space dimension. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 191-220. doi: 10.3934/dcdsb.2012.17.191 |
[12] |
Piotr B. Mucha. Limit of kinetic term for a Stefan problem. Conference Publications, 2007, 2007 (Special) : 741-750. doi: 10.3934/proc.2007.2007.741 |
[13] |
José A. Carrillo, Laurent Desvillettes, Klemens Fellner. Fast-reaction limit for the inhomogeneous Aizenman-Bak model. Kinetic and Related Models, 2008, 1 (1) : 127-137. doi: 10.3934/krm.2008.1.127 |
[14] |
Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022103 |
[15] |
Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115 |
[16] |
Aníbal Rodríguez-Bernal, Silvia Sastre-Gómez. Nonlinear nonlocal reaction-diffusion problem with local reaction. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1731-1765. doi: 10.3934/dcds.2021170 |
[17] |
Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245 |
[18] |
Sebastién Gaucel, Michel Langlais. Some remarks on a singular reaction-diffusion system arising in predator-prey modeling. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 61-72. doi: 10.3934/dcdsb.2007.8.61 |
[19] |
Arturo de Pablo, Guillermo Reyes, Ariel Sánchez. The Cauchy problem for a nonhomogeneous heat equation with reaction. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 643-662. doi: 10.3934/dcds.2013.33.643 |
[20] |
Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]